VIRUSES ARE GOOD FOR YOU Spawn of the devil, computer viruses may help us realize the full potential of the Net. By Julian Dibbell _________________________________________________________________ What scares you most about getting that virus? Is it the prospect of witnessing your system's gradual decay, one nagging symptom following another until one day the whole thing comes to a halt? Is it the self-recrimination, all the useless dwelling on how much easier things would have been if only you'd protected yourself, if only you'd been more careful about whom you associated with? Or is it not, in fact, something deeper? Could it be that what scares you most about the virus is not any particular effect it might have, but simply its assertive, alien presence, its intrusive otherness? Inserting itself into a complicated choreography of subsystems all designed to serve your needs and carry out your will, the virus hews to its own agenda of survival and reproduction. Its oblivious self-interest violates the unity of purpose that defines your system as yours. The virus just isn't, well, you. Doesn't that scare you? And does it really matter whether the virus in question is a biological or an electronic one? It should, of course. The analogy that gives computer viruses their name is apt enough to make comparing bioviruses and their digital analogs an interesting proposition, but it falls short in one key respect. Simply put, the only way to fully understand the phenomenon of autonomously reproducing computer programs is to take into account their one essential difference from organic life forms: they are products not of nature but of culture, brought forth not by the blind workings of a universe indifferent to our aims, but by the conscious effort of human beings like ourselves. Why then, after a decade of coexistence with computer viruses, does our default response to them remain a mix of bafflement and dread? Can it be that we somehow refuse to recognize in them the traces of our fellow earthlings' shaping hands and minds? And if we could shake those hands and get acquainted with those minds, would their creations scare us any less? These are not idle questions. Overcoming our fear of computer viruses may be the most important step we can take toward the future of information processing. Someday the Net will be the summation of the world's total computing resources. All computers will link up into a chaotic digital soup in which everything is connected - indirectly or directly - to everything else. This coming Net of distributed resources will be tremendously powerful, and tremendously hard to harness because of its decentralized nature. It will be an ecology of computing machines, and managing it will require an ecological approach. Many of the most promising visions of how to coordinate the far-flung communication and computing cycles of this emerging platform converge on a controversial solution: the use of self-replicators that roam the Net. Free-ranging, self-replicating programs, autonomous Net agents, digital organisms - whatever they are called, there's an old fashion word for them: computer viruses. Today three very different groups of heretics are creating computer viruses. They have almost nothing to do with each other. There are scientists interested in the abstract behaviors of self-replicating codes, there are developers interested in harnessing the power of self-replicating programs, and there are unnamed renegades of the virus-writing underground. Although they share no common experience, all these heretics respect a computer virus for its irrepressible mobility, for the self-centered autonomy it wrests from a computer environment, and for the surprising agility with which it explores opportunities and possibilities. In short, virus enthusiasts relate to the virus as a fascinating and powerful life form, whether for the fertile creation of yet more powerful digital devices, as an entity for study in itself, or, in the case of one renegade coder, for reckless individual expression. Getting a buzz from the Vx One computer virus writer in his early 20s lives on unemployment checks in a white, working-class exurb of New York City. He tends to spend a fair amount of his leisure time at the local videogame arcade playing Mortal Kombat II, and would prefer that you didn't know his real name. But don't let the slacker r/sum/ fool you: the only credential this expert needs is the pseudonym he goes by in the computer underground: Hellraiser. Hellraiser is the founding member of the world-renowned virus-writers' group Phalcon/Skism. He is also creator of 40Hex, an electronic zine whose lucid programming tips, hair-raising samples of ready-to-run viral code, and trash-talking scene reports have done more to inspire the creation of viruses in this country than just about anything since Robert Morris Jr.'s spectacularly malfunctional worm nearly brought down the Internet. And as if all this weren't enough, Hellraiser also comes equipped with the one accessory no self-respecting expert in this cantankerous field can do without - his very own pet definition of computer viruses. Unlike most such definitions, Hellraiser's is neither very technical nor very polemical, and he doesn't go out of his way to make it known. "Sure," he'll say, with a casual shrug, as if tossing you the most obvious fact in the world: "Viruses are the electronic form of graffiti." Which would probably seem obvious to you too, if you had Hellraiser's personal history. For once upon his teenage prime, Hellraiser was also a hands-on expert in the more traditional forms of graffiti perfected by New York City youth in the 1980s. Going by the handle of Skism, he roamed the city streets and train yards with a can of spray paint at the ready and a Bronx-bred crew of fellow "writers" at his side, searching out the sweet spots in the transit system that would give his tag maximum exposure - the subway cars that carried his identity over the rails, the truck trailers that hauled it up and down the avenues, and the overpasses that announced it to the flow of travelers circulating underneath. In other words, by the time Hellraiser went off to college and developed a serious interest in computers, he was already quite cozy with the notion of infiltrating other people's technology to spread a little of himself as far and wide as possible. So when he discovered one day that his PC had come down with a nasty little digital infection, his first thought was not, as is often customary, to curse the "deviant hackers," "sociopaths," and "assholes" who had written the program, but to marvel at the possibilities this new infiltration technique had opened up. Street graffiti's ability to scatter tokens of one's identity across the landscape of an entire metropolis looked provincial in comparison. "With viruses," Hellraiser remembers thinking, "you could get your name around the world." He was right. The program that had infected his own computer in late 1990, the so-called Jerusalem virus, had spread from Italy to Israel to North America before finally making its way into the pirated copy of the Norton Utilities that brought it to Hellraiser's hard drive. And though Jerusalem's author remained uncredited, other programmers from nearly every corner of the globe were pulling off feats of long-distance self-aggrandizement that dwarfed anything within the reach of America's spray-paint commandos. A kid who called himself Den Zuk had launched a virus that was flashing his handle on computer screens all over Europe, the US, and South America. Early speculation placed its origin in Venezuela, but the virus was eventually tracked to its true source in Bandung, Indonesia, when a researcher in Iceland guessed that some enigmatic characters in the source code were in fact a ham-radio call sign; they made contact with the call sign's registered operator, who immediately copped to his authorship of the program. Equally far-ranging was the journey of the Joshi virus, which spread from India to parts of Africa and on to the rest of the world, popping up every January 5th to command computer users to type "Happy Birthday Joshi" if they wanted control of their systems back. What impressed Hellraiser as much as the vast geographic distances covered by viruses, however, was their long range over time. After all, a painted graffiti tag would only last as long as it took to fade away or be painted over, but viruses, it seemed, might replicate forever in the wild. Indeed, the Jerusalem virus had been doing so for three years before Hellraiser encountered it, and four years later it remains one of the world's most commonly reported viruses. Likewise, Den Zuk is still reproducing on computers worldwide six years after it first left the island of Java; Joshi continues for the fifth year in a row to extort international birthday wishes. Dozens of other viruses from the US, Canada, Eastern Europe, Taiwan, Australia, Turkey, Malta, and other far-flung locales thrive globally (This despite that the antivirus industry spends tens of millions of dollars a year to eradicate them.) Bearing encoded bits of their authors' souls - clever jokes, crude graphics, friendly greetings, and, of course, occasionally, malicious intentions (though in fact the majority of viruses found in the wild are designed to do no damage) - viruses roam the earth in apparent perpetuity. For Hellraiser, steeped as he was in graffiti culture's imperative to "get the name across," there was only one possible response to this new technology of self-projection: he had to get in on the action. But how? Virus writing wasn't exactly a standard subject in computer-science courses, and even the computer underground - with its loose-knit network of bulletin boards and e-zines proffering instruction in the illicit arts of hacking and phone phreaking - wasn't the most dependable source of virus lore. Occasionally, a hack and phreak board might offer a small collection of cryptic viral source code for brave souls to experiment with, but as far as Hellraiser knew, the only system exclusively devoted to viruses at the time was a place called the Virus Exchange, operating out of what was then the world's epicenter of virus production: post-Communist Bulgaria, where the Cold War's endgame had left a lot of overtrained programmers with time on their hands and anarchy on their minds. Lacking the money or the phreaking skills to dial in to the Virus Exchange, Hellraiser made do with what he did have: a live specimen of the Jerusalem virus, replicating furiously inside his desktop system and poised to trash every program file he tried to run on any upcoming Friday the 13th. Carefully, Hellraiser extracted all copies of the virus from the computer and holed up in his dorm room to examine its workings. He studied it for weeks, and then finally, tentatively, he produced a virus of his own. It was a shameless hack really, essentially just the Jerusalem code with the tag line "SKISM-1" inserted in place of a few of the original characters. But after infecting as many computers as he could and subsequently finding his creation enshrined in antivirus literature as the "Skism-1" virus, Hellraiser swelled with a pride he would later recall with some amusement: "Shit, I thought I was the man back then." Hooked on that buzz, he dove deeper into his studies, aiming for proficiency in DOS assembly language, the formidably austere low- down and dirty zine [which] gives examples on writing viruses and ... contains code that can be compiled to viruses," wrote Hellraiser in the introductory file of 40Hex's March 1991 premiŠre. "If you are an antivirus pussy, who is just scared that your hard disk will get erased so you have a psychological problem with viruses, erase these files. This aint for you." The warning scared off no one, of course, least of all the alleged pussies of the antivirus industry, who took to scouring every new issue for a peek inside the mind of the enemy, getting up close and personal at last with the phantoms they'd been battling for years. Not that the life of the virus hunter was a lonely one. In fact, the antivirus community was already in many ways a more advanced subculture than that of the virus writers, complete with local color and a mystique all its own: the industry pioneer and media darling John MacAffee was famed for his giddy morning-after overestimation by a factor of 10 of the Internet worm's damage; then there were those Bulgarians, the notorious and proud Dark Avenger - who signed, and even dedicated, his viruses - and his driven nemesis, Vesselin Bontchev. Endlessly revising and debating the burgeoning taxe circulation of the zine while slowly steering it toward something suspiciously like respectability. Available now in a crisp, desktop-published paper edition as well as good old-fashioned e-text, today's 40Hex still brims with the gnarliest of viral code and remains a feisty defender of the right to create and publish viruses. But it frowns on anyone who looses viruses into the wild and is more likely to solicit guest editorials from antivirus types than to hurl obscenities at them. The young hellion who founded the zine would probably not approve - that is, if the same young hellion were still around to say anything about it. But he isn't. Not really. Hellraiser has undergone some changes of his own lately. Once quite cavalier about releasing viruses that intentionally deleted files or otherwise "fucked people's shit up" (after all, what better way to make your tag linger on in their memory?), he eventually decided that creating destructive programs just gave virus writing a bad name and resolved thenceforth to produce viruses with more or less benign payloads only. And then one day, not too long ago and without much fanfare, he simply called it quits. Partly, he was starting to chafe at the limited range of programming challenges involved in virus creation, he says, but more to the point, his evolving young world view had somehow gotten infected by a creeping respect for the right of others to control what goes into their own digital back yards. Destrsignal a human being can send. "Remember my name," the virus says, which - after all - is another way of saying: "I'm alive." This is about as far as most discussions of virus writing get: ignorant kids thrashing about in codes, creating horribly simple but efficient digital bombs. And even if you take a very generous view that the underground virus writers are inadvertently creating new forms of life, the discussion of beneficial viruses would have to stop here if it weren't for folks like Dr. Mark A. Ludwig. The mutator in the desert Mark Ludwig lives in a desert, and compared to Hellraiser's background, seems to hail from an entirely different planet. But Ludwig, too, is chasing the elusive nature of computer viruses. A married man with three young children, Ludwig lives in Tucson, Arizona, where barrens of sand and sun and saguaro cactus shimmer not too far beyond the sump-cooled confines of his home. But the desert where he wanders is someplace else entirely: it's the lonely intellectual wilderness reserved for those who practice science on the fringe, outside the cozy realms of institutional affiliation, professional consensus, or methodological decorum. He doesn't have to be there. With his PhD in physics from the University of Arizona (and his prior course work at Cal Tech and MIT), Ludwig could easily return to the fold of respectable researchers if he chose. All he'd have to do is let go of his somewhat obsessive scholarly pursuit of the wild computer virus, and pick a slightly more conventional object of study. Or maybe just pursue his present subject with a little more sober attention to devising antivirus countermeasures and a lot less gleeful fascination with virusest of the hard-sci grind and into a job working with computers, a field that at least provided some of the wide-open pioneering spirit that the textbook histories of science had promised, even if it moved him further from pure science's intimacy with the mysteries of nature. But not long after that, around 1988, he started picking up reports of contagious programs running loose among the machines he now made his living from, and the course of his life changed yet again. For Ludwig, viruses came bearing the same mind-expanding message-in-a-bottle they would not much later be bringing to Hellraiser. Except that Ludwig decoded the message a little differently. Where Hellraiser heard the signal "I'm alive" coming from the virus's creator, Ludwig understood the message as coming directly from the virus itself. Viruses behaved like living things: self-reproducing and autonomous. Might we not understand life a little better, he wondered, if we can create something similar, and study it, and try to understand it? The mysteries of nature, in other words, now loomed closer than ever - right there on the wide-open technological frontier to which he'd fled from the wreckage of his scientific aspirations - and Ludwig couldn't resist the temptation to go questing after them once more. His initial attempts to acquire specimens to observe were frustrating. Today's teeming ecology of one-stop Vx trading posts didn't exist. When Ludwig approached the antivirus community for access to its shareing it with the infectious source code intact. But Ludwig has remained undaunted in the face of the world's virophobia. If anything, its vehemence has only sharpened his determination to share the wealth of his knowledge. "People think of viruses as an invasion from Mars," he says, "and that hurts research into these things. My aim is to change people's attitudes, to cut down some of the fear." To that end he has established an annual international virus-writing competition, flying cheerfully in the face of the "swarming hordes of antivirus developers." (One year's contest rewarded the smallest functional DOS virus submitted.) Ludwig also publishes a newsletter now, Computer Virus Developments Quarterly, in which he mingles detailed technical discussion of viral code with rants against the tyrannical tendencies of American government, the moral bankruptcy of contemporary Western culture, and (last but not least) the evils of repressing detailed te The first two volumes of the Santa Fe Institute's Proceedings on Artificial Life published in 1989 and 1992 devote several papers to the idea of computer viruses as synthetic life. But taking the idea further, Ludwig argues that computer viruses, unlike such other forms of artificial life as cellular automata, mobots, or genetic programming, are the only form of artificial life not biased by the hope of their creators. Because computer viruses must exist in an environment (DOS in particular) that was designed without any thought of the digital organisms that might come to inhabit it, they are free from any accusation that the environment's "physics" were written to support the emergence of their lifelike behavior. Or to put it more bluntly, feral viral ecologies (versus the controlled experiments in university labs) represent the only known simulation of life that does not implicitly (and quite unscientifically) build God into the system. Having carefully consf encryption impenetrable to scanners. But since the built-in subroutines that decrypt the programs for execution cannot themselves be enciphered, antivirus programmers simply retooled their scanners to look for the decryption code. Later, in step two, the legendary Bulgarian writer Dark Avenger came up with a clever innovation known as a mutating, or polymorphic, virus. A mutating virus randomly reorganizes its decryption algorithm every time it replicates to outsmart the policing of the scanner. In step three, antivirus engineers devised "heuristic" scanners, built to sniff out all but an insignificant percentage of a virus' mutants through educated pattern recognition. Surveying the fossil record of this game, Ludwig found himself pondering a logical next move: what if someone were now to develop a strain of polymorphs with a genetic memory, so that rather than completely reshuffling their structure with every generation, the few mutants that escape discovery by heuristics could pass their undetectable code on to their offspring? The prospect of virus populations able to autonomously build up immunity to any scanning techniques thrown at them thoroughly depressed antivirus programmers. To Ludwig, however, the possibility proved too intriguing to wait around for some random underground hacker to realize it, and he resolved to do the job himself. The result: Ludwig's "Darwinian Genetic Mutation Engine," a programming utility that turns any normal DOS virus into a souped-up, genetically evolving polymorph, complete with an option for sexual gene-swapping between individuals that come into contact in the wild. Curious hackers can find the Darwinian Genetic Mutation Engine's complete source code in the pages of Computer Viruses, Artificial Life, and Evolution, along with detailed experimental results demonstrating the ability of Darwinian Genetic Mutation Engine-enhanced viruses to run rings around existing scanners. But the program's deeper sig lifelike wonder could be useful if we but understood it, rather than the casting of it as the ultimate technological taboo. Ludwig managed a remarkable intellectual shift. He elevated the computer virus from the digital equivalent of a can of spray paint to an object capable of perhaps infinite variations and almost lifelike behavior. He transformed a tool of vandals into a field of scientific study by emphasizing a computer virus' biological affinity. But by the time Ludwig began publishing, the computer virus was already well on its way from the fringes of science to the seat of honor at research symposiums. Booting up the Cambrian explosion "I'll be out at my place in the jungle over the weekend," said the message, posted in May 1994 from an obscure Internet site in Central America, "so I'll be out of e-mail contact till Monday." And just like that, University of Delaware ecologist Tom Ray (now visiting scholar at the Advanced programmers - infusing the vast unused spaces of the global computer networks with a roiling digital ecology as complex, as fascinating, and ultimately as beneficial to humankind as the rain forests that he has long sought to protect and understand. In short, by infecting the Net with self-replicating code, Ray aims to turn it into a jungle. He didn't start out so ambitious. In the beginning there was just a lone drive of a Toshiba laptop to populate, one tiny digital germ to do it with, and a hunch Ray had been kicking around for a decade or so to spur him on. The hunch was that experiments with self-replicating programs (Ray had first heard about them as a Harvard undergrad in the late '70s) might add some theoretical rigor to eco-science's essentially anecdotal attempts at explaining the abstract processes that gave rise to the complex interspecies relationships he had observed in the field. "I was frustrated," he would later tell a group of colleagues, "because I didn't want to study the products of evolution - vines and ants and butterflies. I wanted to study evolution itself." In this, Ray's attraction to self-reproducing programs differed little from that of Mark Ludwig (who in fact was not unfamiliar with Ray's work by the time he set out to write his magnum opus on computer viruses and evolution). Unlike Ludwig, however, Ray felt neither philosophically obliged nor ethically disposed to work with viruses able to thrive in already existing computer environments. Not that he never considered the option. In fact, his initial plan was to set mutating machine-language organisms loose in a single computer and watch their evolution as they competed against one another for direct access to the computer's core memory, a strategy that might have evolved viruses superbly adapted to any system based on the same instruction set as the original petri chip. But Ray soon scrapped this idea - the risk of accidentally releasing his specimens into the wild seemed too great. Insteaputer, then one way to get there would be to give it an instruction set in which nearly any sequence of bits would make some kind of sense to the system's virtual CPU. So he gave it that instruction. He also equipped his phantom computer with a death function, a "Reaper," which would terminate any individual program sooner or later - but would always get to the oldest or most error-prone programs first. Thus primed to carry out the requisite natural selections, Ray's digital ecosphere was nearly complete. He called it Tierra (Spanish for "earth") and started preparing the final touch: an inhabitant. Later dubbed "the Ancestor," it was the first worm Tom Ray ever created - an 80-byte-long self-replicating machine written in Tierra's quirky assembly language - and as it happens, it was also the last. Once loosed into the Tierra environment installed on Ray's laptop, the creature's offspring quickly spread to the new world's every corner, within minutes displaying the evolutionary transformations that would "write" Ray's organisms from then on. A 79-byte variation appeared, rapidly displacing its slightly clunkier predecessors, then smaller descendants followed - a 45-byter, a 51, eventually even a 22 - entering a taxonomy that would grow to accommodate hundreds of subspecies as Ray played with Tierra in the months and years to follow. The swift and drastic size reductions of those first runs startled Rt dreams, that was what I wanted," Ray later told author Steven Levy. "I didn't write the Ancestor with the idea that it was going to produce all this." As much as this bustling ecology-in-a-box thrilled and surprised Ray, however, it soon began to dawn on him that the Ancestor had produced something even more unexpected: high-quality software. Almost all of the Ancestor's progeny displayed some improvement in the efficiency of their code, but in a few cases, evolution seemed to have attained a level of tight-wound optimization difficult for even the most wizardly of human software engineers to achieve, and Ray couldn't help wondering if there was a way to yoke this inhuman skill to the development of practical applications. It wasn't an unheard-of notion. As long ago as the early '60s, for instance, cutting-edge programmers had begun experimenting with what they called "genetic algorithms" - pools of software subroutines repeatedly multiplied, mutated, and weeded according to how well they performed a given task. Two decades later, in the same ground-breaking work that established the ability of digital viruses to penetrate nearly any system defenses, computer scientist Fred Cg seem to cry out for an evolutionary approach. "We will probably never be able to write such software, as it is way too complex," Ray observes. "Yet we know that evolution can handle that kind of problem." The reason we know that, of course, is that we - and all other multicellular organisms - are wetware embodiments of frightfully complex parallel processes. But that fact posed a new challenge for Ray. Despite the great variety of digital forms Tierra had generated, it remained an ecology of one-celled organisms, none much larger or much more complicated than the 80-byte Ancestor. In fairness it should be pointed out that the terrestrial biosphere spent its first 3 billion years or so in a similar state before finally exploding into multicellular diversity at the dawn of the Cambrian era (a mere 600 million years ago). Yet if Tierra was ever to prove its full value as a software-writing machine - or indeed as a scientific model of evolution - sooner or later it would have to cough up a Cambrian explosion of its own. And since the key to this burst of complexity seemed to Ray to lie in challenging his evolving creatures with more intricate problems than the simple bit-copying tasks they'd grappled with thus far, he decided that the explosion wouldn't happen nearly soon enough if Tierra remained stuck inside conventional computers, and he began looking into the possibility of installing Tierra on a parallel-processing system. But then one day in early 1994, Ray h breeding." Harvested, domesticated and then neutered of their self-replicating properties, these prize specimens of code could then be translated from Tierran language into standard programming languages and set to work at any number of tasks. Ray suspects some form of intelligent network agents would be the likeliest first applications to be culled, but he prefers to emphasize that the most useful products of the digital jungle would be as difficult to predict as rice, pigs, penicillin, and silkworms might have been for an observer of the pre-Cambrian ooze of early carbon-based life. There's a whiff of science fiction rising from all this, of course, but Ray is hardly indulging in idle speculation. Already a team of computer scientists has gathered under his supervision to work full-time on hammering out the technical details of the plan. He's accustomed by now to dealing with his listeners' occasional anxieties about the prospect of Tierran viral-like pests infiltrating the workaday network environment. "I explain why the things can't escape," he says, "and that quiets the nervous people, but some of them continue to look nervous." But when the time comes to put their systems where their mouths are, how many snded, and irrepressible. It's an unnerving prospect. Yet it wouldn't have to be - not if we prepared for it by actively cultivating a digital biodiversity of the sort Tom Ray proposes. This is a niche that will be filled, whether we fill it deliberately or not. "We're just going to have to live with them," artificial life researcher Chris Langton says of computer viruses. Our global web of digital systems, he predicts, is fast unfolding towards a degree of complexity rich enough to support a staggering diversity of autonomously evolving programs. Viruses in a suit and tie But the future of beneficial viruses is not only in the hands of eccentrics such as Hellraiser, Ludwig, or Ray. The good folks at General Magic corporation are eager to put viral code on a firmer and decidedly more lucrative footing. Not that they like to hear it said that they have anything to do with viruses, mind you. General Magic manufactures a hand-held communication device that relies on a nifty new network-streamlining program language called Telescript. Announced earlier this year with the very visible backing of such info-dollar heavyweights as AT&T, Apple, Sony, and Matsushita, Telescript proposes to do good things. Its intelligent agents, General Magic co-founder Bill Atkinson promises, will soon be flitting about cyberspace on your behalf, visiting remote commercial sites to buy, sell, and trade information for you, and generally behaving themselves with all the decorum you'd expect from a personal digital valet. Still, despite rather severe restrictions on the agents' ability to replicate, it's hard to deny certain broad similarities between intelligent agents and the offerings of your typscript, additionally, makes use of a battery of cryptographically secured restrictions to ensure that its agents don't subvert control of the host machine, either by accident or by malicious design). And for another thing, the fact that all the interpreters speak the same programming language regardless of the underlying operating system and hardware means that, as the base of interpreters approaches omnipresence on the world's computer networks, the Net approaches the condition of a single, vast, and unmappable supercomputer, with each wandering digital organism a process in one worldwide parallel computation. Taken together, these two features represent something of a watershed in the history of computing. It has long been observed, rather wistfully, that in principle the world's computers sum up to one gigantic parallel processor, and that the crushing bulk of that metacomputer's CPU cycles goes to waste, unused. Only now, however, with the advent of protocols like Telescript and Tierra, do we have the means to deploy such processes that treat the Net as one machine, safely and sensibly. This, then, is the real significance of these endeavors. The dark side of benefits Trying to imagine the marvels that pour forth once you've successfully tapped a computer as elaborate as the Net is as futile as trying to map the future of a society, or of a life - or of life itself. Of course, trying to foresee the risks that could emerge from that same computer is an equally hopeless task. But as it happens, we are bound to face those risks whether or not we seek to harness the full power of the Net, since the teeming and inevitable population of uncaged digital organisms will in any case plow forward with its own relentless exploration of the Net's capabilities. All we would missprove difficult to distinguish from the meaning of our own existence. Everything You Always Wanted to Know about Viruses (But Were Afraid to Ask) Little Black Book of Viruses ($14.95) and Computer Viruses, Artificial Life, and Evolution ($22.95) by Mark Ludwig are available from American Eagle Publications Inc., PO Box 41401, Tucson, AZ, 85717. Tom Ray can be found at ray@hip.atr.co.jp. A copy of his proposal for the networkwide biodiversity project can be found at ftp://tierra.slhs.udel.edu/ tierra/doc/reserves.tex, and the source code for the Tierra program is ftp://tierra.slhs.udel.edu/tierra/tierra.tar.z. For executable DOS code on disk send a check for $US50 (payable to "Virtual Life") to: Virtual Life, 25631 Jorgensen Road, Newman, CA, 95360. Fred Cohen's book It's Alive! The New Breed of Living Computer Programs (Wiley & Sons, $39.95) is a nice introduction to the question of viruses as a-life. The book includes a disk of reproducing Macintosh programs. To find out more on 40 Hex, e-mail fortyhex@phantom.com. _________________________________________________________________ Julian Dibbell is a New York-based writer who contributes regularly to the Village Voice. _________________________________________________________________