
Myths about Historians

Elliott Middleton, Senior Product Manager, Schneider Electric

Make the most of your energySM

Executive summary
Relational databases are ideal for many applications, but are not the best
solution for time-series data. High throughput systems are not the same as
process historians. Relational Database systems are not suitable for everything.
While Microsoft SQL Server or Oracle databases are capable of storing time-
series data, there are some very significant problems that should be considered
when contemplating their use for process history and industrial applications.
This white paper discusses the real reasons why a process historian is superior
for plant information acquisition and retrieval when compared to a relational
database system.

Myths about Historians

Schneider Electric White Paper 			 Page 2

Introduction

Myth #1:

Myth #2:

Relational databases are ideal for many applications, but are not the best solution for time-series
data. Historian applications have been around a long time and through the years various fallacies
and ‘myths’ have developed and perpetuate without substance or evidence. This paper will discuss
the merits and shortfalls of relational databases as well as uncover and challenge these myths in
the context of specialized process historian applications. This paper will also present some basics
of historian applications, explain some important considerations for an objective evaluation of
historian solutions, and properly set expectations for the value a historian can bring.

High throughput systems are not the same as process historians. While examples can be found of
the New York Stock Exchange trading systems and other high-throughput applications which use
relational databases, it can not be implied from these examples that Relational Database systems
are suitable for everything. While Microsoft SQL Server or Oracle databases are capable of
storing time-series data, there are some very significant problems that should be considered when
contemplating their use for process history and industrial applications.

Storage is so cheaply that efficiency does not matter
It is common to dramatically underestimate how much data a typical process actually generates.
A modest 5,000 tag historian which logs data every second, generates 157 billion distinct values
per year. Even when stored efficiently in 8 bytes per value, storage requirements would be around
1 terabyte per year. In some tests when comparing SQL Server storage requirements for time-
series data and necessary indices with those of Wonderware Historian the difference was 50:1.
Even though storage prices are falling, 50 terabytes of data a year is still a lot. It should also be
recognized that it is not merely a matter of having enough disk space to hold that much data; it
is frequently a requirement that historical data be robustly protected, which multiplies the amount
of storage required for backups or disk mirroring. Some industries impose mandatory regulatory
obligations to maintain several years of data, which further magnify the overall storage requirement.

Relational databases are fast enough
As hardware price performance has improved, relational databases have benefited. However,
relational databases are designed to protect referential integrity around “transactions” that may
update multiple table values in unison, which adds significant overhead. For example, on high-
end hardware (running 64 Itanium processors) SQL Server 2008 established a world record 1126
transactions per second. Granted such transactions are not the same as those required for a
historian, but even such high-end hardware would be taxed to store 5,000 values per second if
each value was a transaction. This means a front-end buffering application must collect the data
and stream numerous values into the database as a single transaction. Other databases without
full transactional support, such as MySQL’s freeware MyISAM storage engine, can support higher
throughputs, but still require a front-end buffer to achieve adequate throughput for all but the tiniest
historian applications.

Of course, the reason to store data in the first place is so that it is available to retrieve later.
Naturally, that makes retrieval performance quite important, too. Particularly in general-purpose
solutions like a relational database, it is possible to organize data so that it is either efficient to store
(higher throughput) or efficient to retrieve (fast retrieval), but not both. Efficient retrieval of time-
series data from a general purpose database requires use of a “clustered index,” something not
available, for example, in the higher-throughput MyISAM storage engine.

In contrast, purpose-built storage engines designed specifically for time-series data leverage the
knowledge of how data is collected and consumed to store it efficiently for both—this would not be
possible if the data were more generalized.

Myths about Historians

Schneider Electric White Paper 			 Page 3

Using a relational database as a historian is a new revelation
There are frequently new ideas about how to apply existing technology—3M Post-It® notes were
a famous application of an existing not-so-sticky adhesive. However, companies have attempted
using a simple relational database schema as a replacement for purpose-built time-series storage
for over a decade. In spite of this “new idea” of using a relational database, the market for
dedicated historian solutions has continued to grow significantly.

You can only use SQL to query data in relational databases
Though relational databases have many advantages over alternative technologies, what catapulted
them to prominence was the power of SQL. SQL standardized and fundamentally changed how
users can extract value from their data from being a complex programming exercise to being a
relatively simple and flexible language to describe the data of interest.

Fortunately, it is very practical to adapt SQL to non-relational data stores and gain the tremendous
benefits and power of SQL without some of the inherent limitations of a relational database.

There is nothing special about time-series data
With all the power of SQL to query data, some may claim that relational databases are just as good
at retrieving timeseries data as they are for transactional data. It is certainly true that SQL gives
great flexibility, but it is based on some fundamental assumptions that do not apply to time-series
data: (a) there is no inherent order in the data records (in fact, time-series data is ordered by time),
(b) all the data is explicitly stored (in fact, most historian data only represents samples from a
continuum of the real data), all data is of equal significance.

These two differences are significant. For example, if an instrument reports a value time stamped
at “7:59:58.603” and a user queries a relational database for the value at “8:00:00.000,” no data
will be returned since there is no records stored for precisely that time—the database does not
recognize that time is a continuum. Similarly, if a temperature was “21ºC” and two-minutes later
was “23ºC,” it has no inherent ability to infer that halfway between these samples the temperature
was approximately “22ºC.”

In historian applications, steady-state operations are rarely most significant. The only way for a
client application to find exceptions is to query all of the data for a measurement, which can place a
heavy load on the overall system: server, network and client. In contrast, historians generally have
means of filtering out insignificant data (based on comparing sequential records) to radically reduce
the volume of data that must be delivered to client applications.

Managing time-series data in a relational database is trivial
Relational databases are designed to accumulate massive amounts of data. However, as the
amount of data grows, so do query execution times, the size of backups, and numerous other
routine operations. To alleviate this performance problem of ever-growing tables, database
administrators must routinely purge data from the database. In any database that protects
transactional integrity, this purge operation must suspend normal database updates—that is a
problem for historian applications running 24/7/365. To even make the purge operation tolerable
requires minimizing the amount of data maintained in the database.

Myth #3:

Myth #4:

Myth #5:

Myth #6:

Myths about Historians

Schneider Electric White Paper 			 Page 4

In the event purged data is needed later (for example, in response to an audit or some regulatory
demands), restoring the data is non-trivial. The generally recommended practice is to restore a
full database backup that included the needed data either to a separate system dedicated for this
purpose, or to take your production system offline and use it. This is even more problematic if the
required data is not available within a single database backup—for example, if you only maintain
the last 30 days of data in the online database and the audit requires 90 days of data, you must
either manually merge all the data into a single database, have three systems, each with an
isolated 30-day window, or examine each backup serially.

True historians, on the other hand, are designed to both handle the rapid growth in data and to
provide simple means of taking subsets of the data offline and online.

The only options are fully relational
or fully proprietary historian solutions
While it is true that most historian solutions either use fully proprietary technology to address the
inherent limitations of relational database or fully leverage relational database to reduce their own
engineering costs, Wonderware Historian actually delivers the best of both worlds. It relies on a
solid relational schema for managing all the relatively static configuration data, but extends the
native transactional storage engine and query processor of Microsoft® SQL Server with proprietary
extensions to address their limitations for time-series data.

Building on Microsoft SQL Server delivers a solution that is easier to secure and manage than
fully proprietary solutions, but without compromising on the fundamental capabilities required in
a historian.

There is nothing special about industrial applications
True historians provide facilities for dealing with the demanding, real-world realities of industrial
applications that are outside the realm of pure relational databases. How do you intend to make
use of the data? Do you need to convert rates into quantities for reporting? If so, that is quite
complex with a SQL query. Is your instrumentation and data collection 100 percent reliable, or do
you sometimes have to “make do” with data that includes instrument errors? While general-purpose
databases can certainly store data, they are not designed to incorporate notions of “data quality”
into calculations and are not able to simply perform routine time-series calculations such an integral
calculation that are commonly needed.

Relational database applications are not historians
A “historian” addresses several related functions: continuously collecting real-time data, storing
noteworthy subsets of that data, and providing a means of extracting meaningful information from
that data. Whereas “historian” describes an application, “relational database” names a technology.
Though there are certainly some significant challenges in using a relational database technology
for time-series data, just because an application uses one does not mean it is not a historian—it
can still be a historian, just a fairly basic one. Rather than focusing on the underlying technology
choices (relational databases or proprietary files), focus on the functionality needed—that requires
an understanding of the overall application and involves much more than simply storing data.

Myth #7:

Myth #8:

Myth #9:

Myths about Historians

Schneider Electric White Paper 			 Page 5

All data is equal in importance and validity
To a relational database, a stored value is precisely that, a value, and is always assumed to be
valid—if it is not, it is up to someone to correct it. In collecting millions of samples from thousands
of data points from around a process, it is inevitable that some information is incorrect or missing.
There may be issues with measurement equipment where values are out of range, communications
was lost, or the data was simply erroneous.

In a plant historian, a stored data point not only has an associated value and time stamp, it also has
an indication of the data quality. Storing a data point from an instrument, outside of the instrument’s
normal operating range, for example, will cause a specific series of quality indicators to be stored
with the value. These indicators are not simply separate columns in the database, but an inherent
property of the sample. They can be retrieved, included in calculations and used to alert operations
or engineering personnel to a potential anomaly.

When summarizing the values (for example, calculating an average temperature over the last
hour), a historian must be able to reflect this data quality in calculation results, optionally filter out
suspect data, and be able to extrapolate when data is missing or deemed invalid. If these real-world
aberrations are not handled correctly, resulting reports, business system integration, and decision
making will be incorrectly skewed. Relational databases alone do not provide these capabilities.

Storing data in a relational database makes it easy to query
Although support for SQL queries is one of the huge benefits of using a relational database, that
doesn’t necessarily mean a particular database design is easy to query via SQL—some designs
are even so convoluted that they cannot effectively use manually-created queries and must,
instead, rely on complex, programmatically generated queries. This can make sense from the
perspective of managing the storage and from the standpoint of portability, but it largely neutralizes
all the inherent advantage of using a relational database.

Storing data in a relational database makes it integrated
Putting two Excel spreadsheet files into the same folder does not make them “integrated” in any
sense, even though they might both include production data. Similarly, taking information from an
ERP (enterprise resource planning) system and historian and storing both in a relational database
does not make it “integrated”. Certainly having all that data in a common technology is the requisite
first step, but it is only that and often it is by far the simplest.

Using a relational database is cheaper than a purpose-built historian
Before you assume you cannot afford a serious historian solution, make sure you understand your
real needs and explore the options—you might be very pleasantly surprised, even based only on
the license costs. When you factor in the lower ownership costs and value of a solution adapted to
your real needs, the purpose-built solution will likely be a lot cheaper.

Myth #11:

Myth #12:

Myth #13:

Myth #10:

Myths about Historians

Schneider Electric White Paper 			 Page 6

Only large-scale continuous processes need a historian
The original commercial historian systems began in the 1980s in oil refining, paper mills and
other continuous processes since these were the only industries that could justify the cost of
minicomputers required to run them. With the rapid adoption of Windows NT in the 1990s, the cost
of the computers dropped significantly and opened the door for lower priced solutions developed
specifically for the new platform, such as Wonderware® IndustrialSQL Server (now, “Wonderware
Historian”). These new solutions quickly demonstrated their cost effectiveness outside of the
traditionally DCS-oriented continuous process industries.

This white paper discussed several reasons why a process historian is superior for plant
information acquisition and retrieval when compared to a relational database system. However, this
does not mean that commercial software has no place in an industrial environment. Today, process
information is needed both outside of the plant environment and inside the business systems
section of an enterprise. And, there is no better way to provide this interface between the plant
data and the enterprise systems than a commercially accepted, standard interface. Wonderware
Historian can integrate a commercially available product (Microsoft SQL Server) with an open,
standard query interface (SQL) to provide open access to plant historical data. This interface can
easily be used by the IT department for reporting or integrating into the ERP systems.

Wonderware Historian offers all the capabilities discussed within this paper and more. Trusted and
in use in over 25,000 installations worldwide, Wonderware Historian empowers plant operations
and enterprise business users alike, delivering the right information to the right person, and leaves
database management where it belongs, in the enterprise IT department and not on the plant floor.

Myth #14:

Conclusion

© Copyright 2014. All rights reserved. Invensys, the Invensys logo, Avantis, SimSci and Wonderware are trademarks of Invensys plc, its subsidiaries or affiliates. All other brands and product names may be trademarks of their respective owners.

PN WW-4208 Rev. 11/14

Schneider Electric 26561 Rancho Pkwy South Telephone: +1-(949)-727-3200 Fax: +1-(949)-727-3270 software.invensys.com

About the author
Elliott Middleton has over 25 years of experience with industrial software, primarily with process
historians, business system integration and operations intelligence applications. As a product
manager, he is responsible for setting the direction for the Schneider Electric software information
solutions, including the Wonderware Historian, Historian Client (aka ActiveFactory), and
Wonderware Information Server web solution. Working with customers, business partners, and the
Invensys development and support teams, Elliott works to identify market problems, define product
requirements and prioritize enhancements. Prior to joining Invensys in 2001, he held similar
positions at AspenTech and IndX. He holds a Bachelor of Science degree in Computer Science
from Baylor University.

