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Geometric Knot Theory

Big Idea
Suppose we replace curves by n-edge polygons. This gives us
a finite-dimensional version of knot theory where we can more
easily understand the topology and the geometry of curve
space.

Theorem (Kuiper, Randell 1987)
Every polygonal knot has at least 6 edges. (And there are 6
edge polygonal knots.)

Theorem (Jin)
If 2 ≤ p < q < 2p, every polygonal (p,q) torus knot has at least
2q edges (and there at 2q edge polygonal (p,q) torus knots).



Two-dimensional Knot Theory

Theorem (1930’s?)
There are no smooth planar knots.

Theorem (Connelly, Demaine, Rote 2004)
There are no polygonal planar knots.



The Structure of Planar Polygons of Fixed Edgelength

The space of planar polygons with fixed edgelengths w1, . . . ,wn
can be described in two ways:

• the set of all configurations of n points ~p1, . . . , ~pn in R2

such that
|~pi+1 − ~pi | = wi

• the set of all configurations of n angles θi on the circle so
that the weighted average

∑
wi(cos θi , sin θi) = ~0

For this talk, we’ll focus on wi = 1, but the theory isn’t really
different otherwise.



From Arms to Polygons

We now want to do an Eric Rawdon type thing– how do we
close polygons? If we could continuously deform every open
polygon to a closed polygon, we’d have proved that open and
closed polygons have the same topology.

Theorem (Farber, Walker, etc)
Well, they don’t.



From Arms to Polygons

So let’s go for something a little weaker:

Definition
The set of non-closed polygons where no more than half of θi
are equal is called the stable polygonal arms.

Theorem (Kapovich-Millson)
There is a continuous map which associates each stable
equilateral polygonal arm uniquely with a closed equilateral
polygon with the same number of edges.



How does it work?
Definition
The maps (hyperbolic isometries!)

f (z) = eiθ z − a
1− āz

form a group of conformal (angle-preserving),
orientation-preserving transformations of the unit disk to itself
called PSL(2,R) which preserves the unit circle.



GIT Quotients

Theorem (Kapovich-Millson, Sjamaar)

• For every stable equilateral arm A, there is a unique µ(A)
in the unit disk so that c(z) = z−µ

1−µ̄z maps zi to a closed
polygon c(zi).

• The closed polygon c(zi) is uniquely associated to the
family of arms related to zi by elements of PSL(2,R).

• The c(zi) is the polygon you’d get from flowing along the
gradient of end-to-end distance squared.

• Closed equilateral polygons are the GIT quotient of SO(2)n

by PSL(2,R).



Closure Algorithm

Question
Is µ(A) the center of mass of the zi? If so, c(z) would certainly
take the center of mass of the zi to the origin.

Proposition
Given a collection of zi on the unit circle with center of mass
w = 1

n
∑

zi , the Milnor-Abikoff-Ye iteration

zi 7→
zi − w

1− w̄zi

yields a point cloud f (zi) with center of mass w ′ = 1
n
∑

f (zi)
satisfying

|w ′| < α|w |
where α < 1 depends only on n.



So what?

Proposition (with Shonkwiler)
MAY iteration converges linearly to the closed polygon c(z).
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The Elliptic Distance Energy

Definition
The elliptic distance energy of a polygon is the sum

E(P) =
∑

vertex pi ,edge ejk

1
(|pi − pj |+ |pi − pk | − |pj − pk |)2

︸ ︷︷ ︸
the triangle inequality =⇒ ≥ 0

Proposition (with Demaine, O’Brien)
If a vertex of the polygon is on an edge, E(P) is infinite. The
only critical points of E(P) are convex polygons.



Algorithm for planar polygonal unknotting

Algorithm
Given a configuration of a planar equilateral polygon P:

1 Find the negative gradient vector of E at P, a set of
velocities vi for angles θi .

2 Construct the family of (open) polygons pi(λ) = θi + λvi .
3 Define e(λ) to be the elliptic distance energy of the closed

polygon c(pi(λ)). Use MAY iteration to compute e(λ) fast.
4 Search for a local min λ0 of e(λ); e(λ0) < e(0) = E(P).

Update P to P ′ = e(λ0).
Repeat until P is sufficiently close to a convex polygon.

Theorem-in-progress (with Shonkwiler)
Time bounds.



Demonstration



Space polygons?

Definition
An equilateral space polygon is given by a collection of edge
directions ei on S2 which sum to zero.



Coordinates on polygon space

Definition
If we triangulate a regular n-gon, we see the polygon is the
boundary of a folded structure made of n−3 flat triangles joined
at n − 3 hinges. The lengths di and angles θi are a system of
coordinates on polygon space called action-angle coordinates.

v1

v2

v3 v4

v5
d1 d2

θ1

θ2



The Triangulation Polytope

Definition
The hinge lengths are sides of triangles, so they obey some
triangle inequalities which define a convex polytope in Rn−3

called the triangulation polytope Pn(~r).

d1

d2

0
0

1

2

1 2



The Triangulation Polytope

Definition
The hinge lengths are sides of triangles, so they obey some
triangle inequalities which define a convex polytope in Rn−3

called the triangulation polytope Pn(~r).

d1

d2 d1 + d2 ≥ 1

d1 ≤ 2

d2 ≤ 2

d1 ≤ d2 + 1

d2 ≤ d1 + 1

0
0

1

2

1 2



The Triangulation Polytope

Definition
The hinge lengths are sides of triangles, so they obey some
triangle inequalities which define a convex polytope in Rn−3

called the triangulation polytope Pn(~r).

d1

d2

d3

(2,2,2)

(0,0,0)
(2,2,0)

(0,2,2)

(2,0,2)



Why This Function?

Theorem (Archimedes, Duistermaat–Heckman)
The action-angle coordinates θ, z on the sphere given by

(θ, z) 7→ (
√

1− z2 cos θ,
√

1− z2 sin θ, z)

are an area-preserving map from the cylinder to the sphere.
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Numerical cubature from Archimedes’ hat-box theorem

Greg Kuperberg∗
Department of Mathematics, University of California, Davis, CA 95616

Dedicated to Krystyna Kuperberg on the occasion of her 60th birthday

Archimedes’ hat-box theorem states that uniform measure on a sphere projects to uniform measure on an
interval. This fact can be used to derive Simpson’s rule. We present various constructions of, and lower bounds
for, numerical cubature formulas using moment maps as a generalization of Archimedes’ theorem. We realize
some well-known cubature formulas on simplices as projections of spherical designs. We combine cubature
formulas on simplices and tori to make new formulas on spheres. In particular Sn admits a 7-cubature formula
(sometimes a 7-design) with O(n4) points. We establish a local lower bound on the density of a PI cubature
formula on a simplex using the moment map.

Along the way we establish other quadrature and cubature results of independent interest. For each t, we
construct a lattice trigonometric (2t + 1)-cubature formula in n dimensions with O(nt) points. We derive a
variant of the Möller lower bound using vector bundles. And we show that Gaussian quadrature is very sharply
locally optimal among positive quadrature formulas.

1. INTRODUCTION

Let µ be a measure on Rn with finite moments. A cubature
formula of degree t for µ is a set of points F = {!pa} ⊂ Rn and
a weight function !pa #→ wa ∈ R such that

∫
P(!x)dµ = P(F)

def
=

N

∑
a=1

waP(!pa)

for polynomials P of degree at most t. (If n= 1, then F is also
called a quadrature formula.) The formula F is equal-weight
if all wa are equal; positive if all wa are positive; and negative
if at least one wa is negative. Let X be the support of µ . The
formula F is interior if every point !pa is in the interior of X ;
it is boundary if every !pa is in X and some !pa is in ∂X ; and
otherwise it is exterior. We will mainly consider positive, in-
terior (PI) and positive, boundary (PB) cubature formulas, and
we will also assume that µ is normalized so that total measure
is 1. PI formulas are the most useful in numerical analysis
[28, Ch. 1]. This application also motivates the main question
of cubature formulas, which is to determine how many points
are needed for a given formula and a given degree t. Equal-
weight formulas that are either interior or boundary (EI or EB)
are important for other applications, in which context they are
also called t-designs.

Our starting point is a connection between quadrature on
the interval [−1,1] and cubature on the unit sphere S2, both
with uniform measure. By Archimedes’ hat-box theorem [2],
the orthogonal projection π from S2 to the z coordinate pre-
serves normalized uniform measure. In plainer terms, for any
interval I ⊂ [a,b] or other measurable set, the area of π−1(I)
is proportional to the length of I; see Figure 1. (It is called the
hat-box theorem because the surface area of a hemispherical
hat equals the area of the side of a cylindrical box containing

∗Electronic address: greg@math.ucdavis.edu; Supported by NSF grant DMS
#0306681

it.) Therefore if F is a t-cubature formula on S2, its projection
π(F) is a t-cubature formula on [−1,1].

π

Figure 1: Archimedes’ hat-box theorem.

The 2-sphere S2 has 5 especially nice cubature formulas
given by the vertices of the Platonic solids. Their cuba-
ture properties follow purely from a symmetry argument of
Sobolev [25]. Suppose that G is the group of common sym-
metries of a putative cubature formula F and its measure µ . If
P(!x) is a polynomial and PG(!x) is the average of its G-orbit,
then

∫
PG(!x)dµ =

∫
P(!x)dµ PG(F) = P(F).

Therefore it suffices to check F for G-invariant polynomials.
In particular, if every G-invariant polynomial of degree ≤ t is
constant, then any G-orbit is a t-design.

By Sobolev’s theorem, the vertices of a regular octahe-
dron form a 3-design on S2. If we project this formula using
Archimedes’ theorem, the result is Simpson’s rule. Another
projection of the same 6 points yields 2-point Gauss-Legendre
quadrature. Figure 2 shows both projections. The 8 vertices
of a cube are also a 3-design. One projection is again 2-point
Gauss-Legendre quadrature; another is Simpson’s 3

8 rule. Fi-
nally the 12 vertices of a regular icosahedron form a 5-design

Illustration by Kuperberg.



The Sampling Theorem

Theorem (with Shonkwiler)
Action-angle coordinates are a volume-preserving map from
torus × polytope (with Euclidean volume!) to the space of
closed polygons.

Corollary
Probabilities computed over torus × polytope equal
probabilities computed over polygon space.



Example: Chord Lengths

Proposition (with Shonkwiler)
The expected length of a chord skipping k edges in an n-edge
equilateral polygon is the (k − 1)st coordinate of the center of
mass of the moment polytope for Pol(n;~1).



Example: Chord Lengths

Proposition (with Shonkwiler)
The expected length of a chord skipping k edges in an n-edge
equilateral polygon is the (k − 1)st coordinate of the center of
mass of the moment polytope for Pol(n;~1).

n k = 2 3 4 5 6 7 8

4 1

5 17
15

17
15

6 14
12

15
12

14
12

7 461
385

506
385

506
385

461
385

8 1,168
960

1,307
960

1,344
960

1,307
960

1,168
960

9 112,121
91,035

127,059
91,035

133,337
91,035

133,337
91,035

127,059
91,035

112,121
91,035



Example: Chord Lengths

Proposition (with Shonkwiler)
The expected length of a chord skipping k edges in an n-edge
equilateral polygon is the (k − 1)st coordinate of the center of
mass of the moment polytope for Pol(n;~1).

E(chord(37,112)) =

2586147629602481872372707134354784581828166239735638
002149884020577366687369964908185973277294293751533
821217655703978549111529802222311915321645998238455
195807966750595587484029858333822248095439325965569
561018977292296096419815679068203766009993261268626
707418082275677495669153244706677550690707937136027
424519117786555575048213829170264569628637315477158
307368641045097103310496820323457318243992395055104

≈ 4.60973



The Fan Triangulation Polytope

d1

d2

d3

(2,3,2)

(0,0,0)
(2,1,0)

The polytope Pn = Pn(~1) corresponding to the “fan
triangulation” is defined by the triangle inequalities:

0 ≤ d1 ≤ 2
1 ≤ di + di+1
|di − di+1| ≤ 1

0 ≤ dn−3 ≤ 2



A Change of Coordinates

If we introduce a fake chordlength d0 = 1 = dn−2, and make the
linear transformation

si = di − di−1, for 1 ≤ i ≤ n − 2

then
∑

si = dn−2 − d0 = 0, so sn−2 is determined by
s1, . . . , sn−3

and the inequalities

0 ≤ d1 ≤ 2
1 ≤ di + di+1
|di − di+1| ≤ 1

0 ≤ dn−3 ≤ 2

become

−1 ≤ si ≤ 1︸ ︷︷ ︸, −1 ≤
n−3∑

i=1

si ≤ 1
i∑

j=1

sj +
i+1∑

j=1

sj ≥ −1

︸ ︷︷ ︸



A Change of Coordinates

If we introduce a fake chordlength d0 = 1 = dn−2, and make the
linear transformation

si = di − di−1, for 1 ≤ i ≤ n − 2

then
∑

si = dn−2 − d0 = 0, so sn−2 is determined by
s1, . . . , sn−3 and the inequalities

0 ≤ d1 ≤ 2
1 ≤ di + di+1
|di − di+1| ≤ 1

0 ≤ dn−3 ≤ 2

become

−1 ≤ si ≤ 1︸ ︷︷ ︸
easy conditions

, −1 ≤
n−3∑

i=1

si ≤ 1
i∑

j=1

sj +
i+1∑

j=1

sj ≥ −1

︸ ︷︷ ︸
harder conditions



A fantastically stupid idea (that works great!)

Just pick s1, . . . , sn−3 independently in [−1,1], so we know they
obey the easy conditions and throw out any picks which don’t
obey the hard conditions

−1 ≤
n−3∑

i=1

si ≤ 1,
i∑

j=1

sj +
i+1∑

j=1

sj ≥ −1.

Theorem (with Duplantier, Shonkwiler, Uehara)
For large n the expected number of tries before a success is
asymptotic to √

π

6
√

6
n3/2.



The Action-Angle Method

We can now state the final sampling algorithm, which
generates perfect, independent samples of polygon space:

Action-Angle Method (with Duplantier, Shonkwiler,
Uehara 2015)

1 Generate (s1, . . . , sn−3) uniformly on [−1,1]n−3 until they
obey hard inequalities, build corresponding d1, . . . ,dn.

2 Generate dihedral angles θ1, . . . , θn−3.
3 Build polygon from action-angle coordinates.

We’ve proved above that this takes O(n5/2) time per sample.



Rank stats for 60-gons

How common are various kinds of knots among all polygons?
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Rank stats for random diagram model

Corresponding graph in the random diagram model:

01 31 3m
1 41 52 5m

2 51 5m
1 31#3m
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1 10 100
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Rank stats for 600 edge collapsed SAP model

Baiesi, Orlandini, Stasiak 2007



Current Questions

• What’s up with the linear rank statistics?
• We can find paths between equilateral space polygons.

How about geodesics? (cf. my student Tom Needham’s
work on curves– solves the problem for nonequilateral
polygons)

• Can we interpolate between polygons? Define the
“average shape” of a collection of curves?

• Can we generalize all this to a statistics of theta curves?
Handcuff graphs? Trees?

• Trees?
• Trees?



Why am I so fixated on trees?



A public service announcement



A public service announcement



Global food supply

Projection
Per-acre crop yields must double by 2050, or people starve.
On worse farmland.
With less water, less fertilizer, and less agricultural chemicals.

• Tilman, D., et al., Global food demand and the
sustainable intensification of agriculture. Proceedings
of the National Academy of Sciences, 2011. 108(50): p.
20260-20264

• Ray DK, Mueller ND, West PC, Foley JA. Yield Trends Are
Insufficient to Double Global Crop Production by 2050.
Hart JP, ed. PLoS ONE. 2013;8(6):e66428.
doi:10.1371/journal.pone.0066428.



Problem: root system bioengineering



Math problem: DiRT, collaboration with Buksch lab

Unknown which genes affect roots. Large databases of digital
photography of root systems show significant variations
between root systems, even for cloned plants.

Problem
Find a mathematically defensible theoretical framework for
measuring the significance of geometric differences between
populations of tree shapes.

The molecular biologists are just guessing until we solve it, the
computer scientists already did their stuff . . . and it matters.



Thank you for listening!
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