
Simulated Annealing and Global Optimization

Jason Cantarella∗

1. OVERVIEW

We’ve now discussed two methods for the unconstrained optimization optimization
problem

given f :Rn → R, minimize f(x).

Nelder-Mead (when you don’t know ∇f) and steepest descent/conjugate gradient (when
you do). Both of these methods are based on attempting to generate a sequence of posi-
tions xk with monotonically decreasing f(xk) in the hopes that the xk → x∗, the global
minimum for f . If f is a convex function (this happens surprisingly often), and has only
one local minimum, these methods are exactly the right thing to use: you know in that case
that there is only one local min of the function and that it is the global min.

In this case, in the plane, Nelder-Mead is guaranteed to converge to the minimum (no-
body has proved it for Rn, even for convex functions, as far as I know). And steepest
descent/conjugate gradient is guaranteed to converge under some very reasonable assump-
tions about rate of decay of |∇f | to zero as we approach the min.

However, for a non-convex objective function f the situation is really different. First,
we can expect there to be a collection of local minima for the function located in “basins”
which are surrounded by “rims”. These basins are the domains of attraction for the (neg-
ative) gradient flow1 of the function f . If a minimization algorithm is started in the basin
corresponding to a local min, it is entirely possible that the sequence of points xk gener-
ated by the algorithm may have to include points with larger function values than f(x0)
in order to reach the global min.

The first observation we can make is that local information can’t tell us which way to

∗University of Georgia, Mathematics Department, Athens GA
1 These are in principle different from the basins of attraction of, say, the steepest descent algorithm because

the finite size steps can skip over dips in the function landscape which radically change the course of the
gradient flow.

2

direct our efforts to find a global min. After all, you can easily imagine a collection of
objective functions which are exactly the same in a neightborhood of the origin, but have
global minima in very different locations. Therefore, we are going to have to make some
choices randomly in our algorithm. To formalize things, suppose we have

• A state space Ω which describes the set of inputs to be searched. This space can be
Rn, or any subspace of Rn, including finite subsets, bounded regions, and compli-
cated submanifolds.

• An objective function (usually called an energy function) E :Rn → R.

• A set or space of moves η which join pairs of points in Ω, together with an algorithm
which randomly samples the space of moves η(w) which join other points to any
given w ∈ Ω.

Example. If we wish to search a graph, then Ω consists of the vertices of the graph,
η(w) consists of the vertices joined to w by an edge, and a sampling algorithm consists of
choosing among the elements of η(w) with equal probability.

Example. If we wish to optimize a function over Rn, then Ω = Rn, the space of moves
η(w) might be the unit ball, with vector v joining w to w + v, and a sampling algorithm
consists of choosing a vector at random in the unit ball according to volume.

A simulated annealing algorithm is given by the following procedure. Start with any
point x0 in Ω.

• Given xk, choose a candidate xk+1 from η(xk) using the random sampling algorithm
for η(xk) and compute ∆(E) = E(xk+1)− E(xk).

• Evaluate an “acceptance rule” α(∆E, k) to give the probability of accepting xk+1

as the next configuration.

– With probability α(∆E, k), update xk to xk+1 and continue.

– With probability 1−α(∆E, k), return to the previous step and choose another
move.

We require the acceptance rule α to obey some reasonable properties at every k.

3

• If ∆E < 0, then α(∆E, k) = 1. That is, downhill steps are always accepted.

• If ∆E > 0, then α(∆E,K) is monotone decreasing in ∆E. That is, steps which
increase energy by a lot are less likely than steps which increase energy a little.

• As ∆E →∞, α(∆E, k)→ 0. That is, huge upward steps in energy are unlikely to
be accepted.

This simple framework for minimization turns out to be surprisingly effective, and
while the choices of move sets, sampling algorithms, and acceptance rules definitely
change the performance of the algorithm, it is rare for them to entirely stall convergence.
The basic idea is very simple: the acceptance of occasional upward steps allow you to
escape the basin of attraction of a bad local minimum, while the bias in favor of downhill
steps leads the algorithm towards minimizers. For small k, we will leave the acceptance
probability of upwards relatively high, in order to allow the algorithm to explore the energy
landscape. As the algorithm goes on, we will gradually reduce the probability of accepting
an uphill step in order to ensure that we spend more time in deeper basins, increasing the
chance that we will stay in the basin of the global minimum. In the endgame, we will
reduce the probability of accepting an uphill step to zero in order to find the bottom of the
current basin.

2. DEMONSTRATION: A SELF-ASSEMBLING SHAPE

The name “annealing” refers to a process for encouraging crystal formation in metals.
An orderly crystal structure is a (global) minimizer for a complicated potential energy
given by the attractions experienced by the metal atoms. There are certainly plenty of
local minima for this potential given by lining up small clusters of atoms together in a way
which does not align globally. When the metal is at high temperature, random thermal
motions are very energetic, and can shift the atoms to configurations with higher potential
energy. As the temperature cools, these random motions contain less energy, and are more
likely to shift the atoms into a configuration of lower potential energy. If the cooling is
slow enough, extremely large crystals can be formed with millions of atoms beftween
defects. A version of this process was practiced by the legendary swordsmiths of medieval
Japan.

Demonstration. There’s a self-assembling dodecahedron on the shelves in my office be-
hind the desk. It’s in a plastic container. The structure is created from 12 identical faces
created with a 3d printer. They are joined by magnets, and the potential energy of the

4

configuration is lowest when the magnets are in close contact. The assembled state is a
global minimum of this energy.

Break the thing apart, and put the pieces in the tub and shake it and tumble it. It
takes about 5 minutes, but it really will put itself back together. If you get frustrated
with the demo, or just don’t want to do it, you can show this YouTube link to a similar
demonstration.

http://www.youtube.com/watch?v=X-8MP7g8XOE

3. THE METROPOLIS ALGORITHM

The original simulated annealing algorithm was proposed in 1953 by Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller, and works by setting giving the acceptance
criterion

Definition 1. The Metropolis acceptance criterion is this. Given a parameter T (called the
temperature),

α(∆E, k) =

{
e−∆E/T if ∆E > 0.

1 if ∆E ≤ 0.

As k → ∞, T → 0. The rate at which one reduces T is called the cooling schedule and
for now we’ll leave it unspecified.

Of course, it’s completely mysterious right now why this acceptance rule would have
been chosen. And, indeed, in order to do so, we’ll have to explain some things about
statistical mechanics and Markov chains. The basic idea here is this: since the operation
of the algorithm is itself random, we can’t easily predict the outcome of a single run. It’s
possible, for instance, that if any adjacent state to the start point has higher energy, then
the algorithm will never succeed at picking x1. However, this is very unlikely.

What we want to do instead is imagine that we are computing the evolution of a prob-
ability distribution on states of the system. At the start, this probability distribution is
concentrated at a single point. As the algorithm works, the probability distribution spreads
out as it becomes possible to reach far away states by a sequence of accepted moves. And
eventually, the probability distribution stabilizes (we hope) as we average over an ever-
increasing space of trajectories which cover the entire space Ω.

http://www.youtube.com/watch?v=X-8MP7g8XOE

5

4. THE BOLTZMANN DISTRIBUTION

Equivalently, instead of studying the probability that a single run of the algorithm
x0, . . . , xk is in a given state w after a given number of steps k, we can consider the
distribution of a large collection of size N of runs started at the same x0. If the probability
of finding a single walker at state w at this point is p(w), we expect to find p(w)N of our
large collection. In order to simplify notation, let’s now assume that the states are indexed
by 1, 2, . . . , i, and refer to the number of runs in state i at this point as ni. In this language,
ni/N = p(i). The ni are called occupation numbers.

Observe that given a set of occupation numbers ni, there is more than one distribution
of the states occupied by our N runs which can lead to these occupation numbers. For
instance, if there were N states, and each ni = 1, we still wouldn’t know which run was
in which state, so there would be N ! ways this distribution of occupation numbers could
occur. In general, we can compute

W ({ni}) =
N !

Πini!

Here we use the convention that 0! = 1, as usual, to denote the fact that there is only one
way for zero runs to occupy a given state.

Now suppose that we knew (don’t ask how yet!) that the total energy of all the walkers
was Etotal. In this case, we would have two constraints on the system:∑

ni = N,
∑

Eini = Etotal. (1)

We now have the following idea:

Ansatz (organizing idea). Even when restricted to the set of occupation numbers which
satisfy the constraints of (1), the distributionW is so sharply peaked that the overwhelming
majority of configurations have occupation numbers which maximize W subject to these
constraints.

We now solve the problem of maximizingW subject to the constraints of (1), obtaining
the following result:

Proposition 2. Each value of Etotal implicitly defines a constant T (called the tempera-
ture of the system) with the property that the distribution of occupation numbers which
maximizes W has probabilities pi = ni/N given by the Boltzmann distribution

pi = e−Ei/T/Z, where Z =
∑

e−Ei/T .

6

Proof. The first trick is to realize that we can maximize lnW instead of W . Now

lnW = ln(N !)−
∑

ln(ni!)

Further, we have Stirling’s approximation ln k! ' k ln k − k, which holds approximately
for large k. Replacing the ln terms, we see that

lnW ' N lnN −N −
∑

ni lnni − ni

' N lnN −
∑

ni lnni

because
∑
ni = N is one of our constraints. Now if we rewrite the first N in N lnN as∑

ni, we can improve our expression for lnW to

lnW ' N lnN −
∑

ni lnni

'
∑

ni(lnN − lnni)

' −
∑

ni(lnni − lnN)

' −
∑

ni ln(ni/N).

Since ni = Npi, we can last rewrite things as

lnW ' −N
∑

pi ln pi.

Finally, since it is equivalent to maximize (lnW)/N instead of lnW , we can now rewrite
the entire problem in terms of the probabilities pi:

Maximize f(~p) = −
∑

pi ln pi, subject to
∑

pi = 1 and
∑

Eipi = Etotal/N.

Now it’s true that the pi are actually all rational numbers with denominator N . But since
we’re approximating anyway, and assuming that N is large, we may as well think of the
pi as continuous variables. From this point of view, the optimization problem above is an
exercise in Lagrange multipliers. The gradient of the objective function is given by

∇f = (− ln p1 − 1,− ln p2 − 1, . . . ,− ln pn − 1).

while the gradient of the first constraint is (1, . . . , 1) and the gradient of the second con-
straint is (E1, . . . , En). If λ1 and λ2 are the Langrange multipliers, we see that at the
maximum, we have for each i

− ln pi − 1 = λ1 + λ2Ei, or pi = e−1−λ1e−λ2Ei

7

Since
∑
pi = 1, we must have

1 =
∑

e−1−λ1e−λ2Ei = e−1−λ1

∑
e−λ2Ei .

This means that in particular,

e−1−λ1 =
1∑
e−λ2Ei

,

a fact that we can use to rewrite our expression for the pi as

pi =
e−λ2Ei∑
e−λ2Ei

The denominator in this sum is usually denoted Z and called the partition function. Now
we can use the second constraint equation to write an equation involving λ2:∑

Eie
−λ2Ei/Z = Etotal/N,

which specifies λ2 implicitly in terms of Etotal, as promised. For thermodynamic reasons,
the reciprocal of λ2 is called the temperature, T of the system, and writing λ2 = 1/T gives
the final expression

pi =
e−Ei/T∑
e−Ei/T

which we promised above.

5. MARKOV CHAINS

Example. Suppose that we have a very simple example where there are two states in Ω:
state 1 with energy 1 and state 2 with energy 2, both states are connected by an edge,
and we run the Metropolis algorithm on this system. We can encode the operation of the
algorithm by a 2x2 transition matrix M whereMij gives the probability of moving to state
i from state j. A little bit of thought convinces you that the matrix M is(

1− e−1/T 1
e−1/T 0

)
since

(
p(rejection) = 1−M12 ∆E = +1

∆E = −1 p(rejection) = 1−M21

)
If we start the algorithm with a certain probability p1 of being in state 1 and p2 of being in
state 2, then on the next step, the occupation probabilities become(

1− e−1/T 1
e−1/T 0

)(
p1

p2

)

8

and in general if the initial vector of occupation probabilities is ~p, on the k-th step, we
have occupation probabilities Mk~p. Notice that each row of the matrix sums to one (since
the chain must be in some state after being in state i with probability 1).

Definition 3. A Markov chain is the set of probability vectors given by iterating a transition
matrixM (an n×nmatrix, all of whose rows sum to 1) on an initial vector of probabilities
~p. The chain is aperiodic if some Mii > 0, and ergodic if M cannot be made block-
diagonal by applying a permutation matrix2.

We then have

Theorem 4 (Perron-Frobenius Theorem). The transition matrix M of an ergodic, aperi-
odic Markov chain has a unique eigenvector v1 with eigenvalue λ1 = 1. All other eigen-
values λ2, . . . , λn have |λi| < 1.

The consequence of this is that if we write the initial probability distribution ~p in terms
of the eigenvectors of M as

~p =
∑

aivi, then Mk~p =
∑

aiλ
k
i vi = a1v1 +

∑
i>1

aiλ
k
i vi.

As k →∞, the sum on the right approaches zero (since |λi| < 1 when i > 1), and we see
that as long as a1 6= 0,

lim
k→∞

Mk~p = a1v1.

This proves

Theorem 5. For almost every starting configuration, a Markov chain converges geomet-
rically to the probability distribution v1. This is called the stationary distribution of the
chain.

Example. In our initial example, Mathematica tells us that the eigenvectors are

v1 =

(
e1/T

1+e1/T
1

1+e1/T

)
and v2 =

(−1√
2

1√
2

)
with eigenvalues 1 and −e−1/T . As T → 0, we can see that the stationary distribution is
almost entirely concentrated in the minimum energy state 1, with only a tiny probability

2 This means that we can’t partition the states into two groups so that the probability of reaching one group
from the other is zero.

9

of being in state 2. On the other hand, as T → ∞, e1/T → 1 and the algorithm has equal
probability of being in either state. This means that as we reduce T → 0, the algorithm be-
comes increasingly likely to be in the minimum energy state, and the Metropolis algorithm
succeeds at this global minimization problem!

6. CONNECTING THE METROPOLIS ALGORITHM TO THE BOLTZMANN
DISTRIBUTION

We can now write down the general transition matrix for the Metropolis algorithm.
Suppose that #n(j) is the number of states which are adjacent to state j. Then we have

Mij =


0, if i and j are not neighbors

1
#n(j)

, if i and j are neighbors and ∆E = E(i)− E(j) ≤ 0
e−∆E/T

#n(j)
, if i and j are neighbors and ∆E = E(i)− E(j) > 0

1−
∑

k 6=jMkj, if i = j

(2)

This is all pretty obvious, except for the last one, which is the probability that the step was
rejected and hence that we stayed in state j.

We now prove that

Proposition 6. At any fixed temperature T , the Boltzmann distribution

pi = e−Ei/T/Z, where Z =
∑

e−Ei/T .

is the stationary distribution for the Markov chain given by the Metropolis algorithm Mij

of (2) as long as the number of neighbors of each state is the same.

Proof. We first show that if a probability distribution ~p has

Mijpj = Mjipi

for all i and j, then ~p is the stationary distribution for M . To prove this, we sum over j:∑
i

Mijpj = pj
∑
i

Mij = pj.

and ∑
i

Mjipi = (M~p)j.

10

Since this is true for all j, this is really the matrix equation M~p = ~p, which is of course
exactly the statement that p is the stationary distribution.

Now we need to show that the transition matrix for the Markov chain and the probability
vector given by the Boltzmann distribution have this property. Observe that if i and j are
not neighbors, then Mij = Mji = 0 and the statement is trivially true. So suppose i and j
are neighbors, and (wlog) that E(i) > E(j). Then

Mij

Mji

=
e−∆E/T

#n(j)

#n(i)

1
= e−∆E/T .

But

e−∆E/T =
e−E(i)/T

e−E(j)/T
=
pi
pj
.

where these are the pi and pj from the Boltzmann distribution. Cross-multiplying,

Mijpj = Mjipi

which is exactly what we wanted.

7. PAUSE TO APPRECIATE OUR GAINS

We have now shown that if we give the Metropolis algorithm enough time to run at each
temperature, it will eventually converge to the Boltzmann distribution, which is heavily
biased toward low-energy states. Further, as the temperature continues to be reduced, we
should converge to the Boltzmann distribution at temperature 0, which is guaranteed to be
in the (global) minimum energy state. What could possibly go wrong?

• You cool too fast, trapping yourself in a basin which you never climb out of.

• You cool too slowly, and the universe undergoes heat death before you answer your
problem.

Theorem 7 (Geman and Geman, 1984). There is a cooling schedule which is guaranteed
to arrive at the global minimum energy as long as the state space is finite and connected.

11

However, this cooling schedule is way too slow to be practical. In practice, one almost
always uses

T (t) = T0ρ
t, (exponential cooling)

with T0 set relatively large and ρ ' 1 (say ρ = 0.99). You then cool until temperature
approaches zero, or until you’ve reached a value of the energy function which is good
enough for your purposes.

8. WORKED EXAMPLE: CODEBREAKING

Demonstration: Codebreaking.

	Overview
	Demonstration: A self-assembling shape
	The Metropolis Algorithm
	The Boltzmann Distribution
	Markov Chains
	Connecting the Metropolis Algorithm to the Boltzmann Distribution
	How can it be improved?
	Hybrid methods
	Worked example: codebreaking

