
Chapter 4

Adjacency matrices, Eigenvalue
Interlacing, and the Perron-Frobenius
Theorem

In this chapter, we examine the meaning of the smallest and largest eigenvalues of the adjacency
matrix of a graph. Note that the largest eigenvalue of the adjacency matrix corresponds to the
smallest eigenvalue of the Laplacian. Our focus in this chapter will be on the features that
adjacency matrices possess but which Laplacians do not. Where the smallest eigenvector of the
Laplacian is a constant vector, the largest eigenvector of an adjacency matrix, called the Perron
vector, need not be. The Perron-Frobenius theory tells us that the largest eigenvector of an
adjacency matrix is non-negative, and that its value is an upper bound on the absolute value of
the smallest eigenvalue. These are equal precisely when the graph is bipartite.

We will examine the relation between the largest adjacency eigenvalue and the degrees of vertices
in the graph. This is made more meaningful by the fact that we can apply Cauchy’s Interlacing
Theorem to adjacency matrices. We will use it to prove a theorem of Wilf [Wil67] which says that
a graph can be colored using at most 1 + bµ1c colors. We will learn more about eigenvalues and
graph coloring in Chapter 19.

4.1 The Adjacency Matrix

Let M be the adjacency matrix of a (possibly weighted) graph G. As an operator, M acts on a
vector x 2 IRV by

(Mx )(a) =
X

(a,b)2E

wa,bx (b). (4.1)

We will denote the eigenvalues of M by µ1, . . . , µn. But, we order them in the opposite direction
than we did for the Laplacian: we assume

µ1 � µ2 � · · · � µn.
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The reason for this convention is so that µi corresponds to the ith Laplacian eigenvalue, �i. If G
is a d-regular graph, then D = I d,

L = I d�M ,

and so
�i = d� µi.

Thus the largest adjacency eigenvalue of a d-regular graph is d, and its corresponding eigenvector
is the constant vector. We could also prove that the constant vector is an eigenvector of
eigenvalue d by considering the action of M as an operator (4.1): if x (a) = 1 for all a, then
(Mx )(b) = d for all b.

4.2 The Largest Eigenvalue, µ1

We now examine µ1 for graphs which are not necessarily regular. Let G be a graph, let dmax be
the maximum degree of a vertex in G, and let dave be the average degree of a vertex in G.

Lemma 4.2.1.
dave  µ1  dmax.

Proof. The lower bound follows by considering the Rayleigh quotient with the all-1s vector:

µ1 = max
x

xTMx

xTx
�

1TM 1

1T1
=

P
a,bM (a, b)

n
=

P
a d(a)

n
= dave.

To prove the upper bound, Let �1 be an eigenvector of eigenvalue µ1. Let a be the vertex on
which �1 takes its maximum value, so �1(a) � �1(b) for all b, and we may assume without loss of
generality that �1(a) > 0 (use ��1 if �1 is strictly negative). We have

µ1 =
(M�1)(a)

�1(a)
=

P
b:b⇠a�1(b)

�1(a)
=

X

b:b⇠a

�1(b)

�1(a)


X

b:b⇠a

1 = d(a)  dmax. (4.2)

Lemma 4.2.2. If G is connected and µ1 = dmax, then G is dmax-regular.

Proof. If we have equality in (4.2), then it must be the case that d(a) = dmax and �1(b) = �1(a)
for all (a, b) 2 E. Thus, we may apply the same argument to every neighbor of a. As the graph is
connected, we may keep applying this argument to neighbors of vertices to which it has already
been applied to show that �1(c) = �1(a) and d(c) = dmax for all c 2 V .

The technique used in these last two proofs will appear many times in this Chapter.
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4.3 Eigenvalue Interlacing

We can strengthen the lower bound in Lemma 4.2.1 by proving that µ1 is at least the average
degree of every subgraph of G. We will prove this by applying Cauchy’s Interlacing Theorem.

For a graph G = (V,E) and S ⇢ V , we define the subgraph induced by S, written G(S), to be the
graph with vertex set S and all edges in E connecting vertices in S:

{(a, b) 2 E : a 2 S and b 2 S} .

For a symmetric matrix M whose rows and columns are indexed by a set V , and a S ⇢ V , we
write M (S) for the symmetric submatrix with rows and columns in S.

Theorem 4.3.1 (Cauchy’s Interlacing Theorem). Let A be an n-by-n symmetric matrix and let
B be a principal submatrix of A of dimension n� 1 (that is, B is obtained by deleting the same
row and column from A). Then,

↵1 � �1 � ↵2 � �2 � · · · � ↵n�1 � �n�1 � ↵n,

where ↵1 � ↵2 � · · · � ↵n and �1 � �2 � · · · � �n�1 are the eigenvalues of A and B , respectively.

Proof. Without loss of generality we will assume that B is obtained from A by removing its first
row and column. We now apply the Courant-Fischer Theorem, which tells us that

↵k = max
S✓IRn

dim(S)=k

min
x2S

xTAx

xTx
.

Applying this to B gives

�k = max
S✓IRn�1

dim(S)=k

min
x2S

xTBx

xTx
= max

S✓IRn�1

dim(S)=k

min
x2S

✓
0
x

◆T

A

✓
0
x

◆

xTx
.

We see that the right-hand expression is taking a maximum over a special family of subspaces of
dimension k: all the vectors in the family must have first coordinate 0. As the maximum over all
subspaces of dimension k can only be larger, we immediately have

↵k � �k.

We may prove the inequalities in the other direction, such as �k � ↵k+1, by replacing A and B
with �A and �B .

Lemma 4.3.2. For every S ✓ V , let dave(S) be the average degree of G(S). Then,

dave(S)  µ1.
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Proof. If M is the adjacency matrix of G, then M (S) is the adjacency matrix of G(S). Lemma
4.2.1 says that dave(S) is at most the largest eigenvalue of the adjacency matrix of G(S), and
Theorem 4.3.1 says that this is at most µ1.

If we remove the vertex of smallest degree from a graph, the average degree can increase. On the
other hand, Cauchy’s Interlacing Theorem says that µ1 can only decrease when we remove a
vertex.

Lemma 4.3.2 is a good demonstration of Cauchy’s Theorem. But, using Cauchy’s Theorem to
prove it was overkill. An more direct way to prove it is to emulate the proof of Lemma 4.2.1, but
computing the quadratic form in the characteristic vector of S instead of 1.

4.4 Wilf’s Theorem

We now apply Lemma 4.3.2 to obtain an upper bound on the chromatic number of a graph.
Recall that a coloring of a graph is an assignment of colors to vertices in which adjacent vertices
have distinct colors. A graph is said to be k-colorable if it can be colored with only k colors1. The
chromatic number of a graph, written �(G), is the least k for which G is k-colorable. The
bipartite graphs are exactly the graph of chromatic number 2.

It is easy to show that every graph is (dmax + 1)-colorable. Assign colors to the vertices
one-by-one. As each vertex has at most dmax neighbors, there is always some color one can assign
that vertex that is di↵erent than those assigned to its neighbors. The following theorem of Wilf
[Wil67] improves upon this bound.

Theorem 4.4.1.
�(G)  bµ1c+ 1.

Proof. We prove this by induction on the number of vertices in the graph. To ground the
induction, consider the graph with one vertex and no edges. It has chromatic number 1 and
largest eigenvalue zero2. Now, assume the theorem is true for all graphs on n� 1 vertices, and let
G be a graph on n vertices. By Lemma 4.2.1, G has a vertex of degree at most bµ1c. Let a be
such a vertex and let S = V \ {a}. By Theorem 4.3.1, the largest eigenvalue of G(S) is at most
µ1, and so our induction hypothesis implies that G(S) has a coloring with at most bµ1c+1 colors.
Let c be any such coloring. We just need to show that we can extend c to a. As a has at most
bµ1c neighbors, there is some color in {1, . . . , bµ1c+ 1} that does not appear among its neighbors,
and which it may be assigned. Thus, G has a coloring with bµ1c+ 1 colors.

The simplest example in which this theorem improves over the naive bound of dmax + 1 is the
path graph on 3 vertices: it has dmax = 2 but µ1 < 2. Thus, Wilf’s theorem tells us that it can be
colored with 2 colors. Star graphs provide more extreme examples. A star graph with n vertices
has dmax = n� 1 but µ1 =

p
n� 1.

1
To be precise, we often identify these k colors with the integers 1 through k. A k-coloring is then a function

c : {1, . . . , k} ! V such that c(a) 6= c(b) for all (a, b) 2 E.
2
If this makes you uncomfortable, you could use both graphs on two vertices
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4.5 Perron-Frobenius Theory for symmetric matrices

The eigenvector corresponding to the largest eigenvalue of the adjacency matrix of a graph is
usually not a constant vector. However, it is always a positive vector if the graph is connected.
This follows from the Perron-Frobenius theory (discovered independently by Perron [Per07] and
Frobenius [Fro12]). In fact, the Perron-Frobenius theory says much more, and it can be applied to
adjacency matrices of strongly connected directed graphs. Note that these need not even be
diagonalizable!

In the symmetric case, the theory is made much easier by both the spectral theory and the
characterization of eigenvalues as extreme values of Rayleigh quotients. For a treatment of the
general Perron-Frobenius theory, we recommend Seneta [Sen06] or Bapat and Raghavan [BR97].

Theorem 4.5.1. [Perron-Frobenius, Symmetric Case] Let G be a connected weighted graph, let
M be its adjacency matrix, and let µ1 � µ2 � · · · � µn be its eigenvalues. Then

a. The eigenvalue µ1 has a strictly positive eigenvector,

b. µ1 � �µn, and

c. µ1 > µ2.

Before proving Theorem 4.5.1, we will prove a lemma that will be used in the proof. It says that
non-negative eigenvectors of non-negative adjacency matrices of connected graphs must be strictly
positive.

Lemma 4.5.2. Let G be a connected weighted graph (with non-negative edge weights), let M be
its adjacency matrix, and assume that some non-negative vector � is an eigenvector of M . Then,
� is strictly positive.

Proof. If � is not strictly positive, there is some vertex a for which �(a) = 0. As G is connected,
there must be some edge (b, c) for which �(b) = 0 but �(c) > 0. Let µ be the eigenvalue of �. As
�(b) = 0, we obtain a contradiction from

µ�(b) = (M�)(b) =
X

(b,z)2E

wb,z�(z) � wb,c�(c) > 0,

where the inequalities follow from the fact that the terms wb,z and �(z) are non-negative.

So, we conclude that � must be strictly positive.

Proof of Theorem 4.5.1. Let �1 be an eigenvector of µ1 of norm 1, and construct the vector x
such that

x (u) = |�1(u)| , for all u.

We will show that x is an eigenvector of eigenvalue µ1.
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We have xTx = �T
1 �1. Moreover,

µ1 = �T
1 M�1 =

X

a,b

M (a, b)�1(a)�1(b) 
X

a,b

M (a, b) |�1(a)| |�1(b)| = xTMx .

So, the Rayleigh quotient of x is at least µ1. As µ1 is the maximum possible Rayleigh quotient for
a unit vector, the Rayleigh quotient of x must be µ1 and Theorem 2.2.1 implies that x must be
an eigenvector of µ1. As x is non-negative, Lemma 4.5.2 implies that it is strictly positive.

To prove part b, let �n be the eigenvector of µn and let y be the vector for which y(u) = |�n(u)|.
In the spirit of the previous argument, we can again show that

|µn| = |�nM�n| 
X

a,b

M (a, b)y(a)y(b)  µ1y
Ty = µ1. (4.3)

To show that the multiplicity of µ1 is 1 (that is, µ2 < µ1), consider an eigenvector �2. As �2 is
orthogonal to �1, it must contain both positive and negative values. We now construct the vector
y such that y(u) = |�2(u)| and repeat the argument that we used for x . We find that

µ2 = �T
2 M�2  yTMy  µ1.

If µ2 = µ1, then y is a nonnegative eigenvector of eigenvalue µ1, and so Lemma 4.5.2 says that it
is strictly positive. Thus, �2 does not have any zero entries. As it has both positive and negative
entries and the graph is connected, there must be some edge (a, b) for which �2(a) < 0 < �2(b).
Then the above inequality must be strict because the edge (a, b) will make a negative contribution
to �T

2 M�2 and a positive contribution to yTMy . This contradicts our assumption that
µ2 = µ1.

Finally, we show that for a connected graph G, µn = �µ1 if and only if G is bipartite. In fact, if
µn = �µ1, then µn�i = �µi+1 for every i.

Proposition 4.5.3. If G is a connected graph and µn = �µ1, then G is bipartite.

Proof. Consider the conditions necessary to achieve equality in (4.3). First, y must be an
eigenvector of eigenvalue µ1. Thus, y must be strictly positive, �n can not have any zero values,
and there must be an edge (a, b) for which �n(a) < 0 < �n(b). It must also be the case that all of
the terms in X

(a,b)2E

M (a, b)�n(a)�n(b)

have the same sign, and we have established that this sign must be negative. Thus, for every edge
(a, b), �n(a) and �n(b) must have di↵erent signs. That is, the signs provide the bipartition of the
vertices.

Proposition 4.5.4. If G is bipartite then the eigenvalues of its adjacency matrix are symmetric
about zero.
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Proof. As G is bipartite, we may divide its vertices into sets S and T so that all edges go between
S and T . Let � be an eigenvector of M with eigenvalue µ. Define the vector x by

x (a) =

(
�(a) if a 2 S, and

��(a) if a 2 T .

To see that x is an eigenvector with eigenvalue �µ, note that for a 2 S,

(Mx )(a) =
X

(a,b)2E

M (a, b)x (b) =
X

(a,b)2E

M (a, b)(��(b)) = �µ�(a) = �µx (a).

We may similarly show that (Mx )(a) = �µx (a) for a 2 T .


