
Probability and Calculus (and Chicken)

One of the most useful parts of calculus in business is dealing with probability. Here’s an
example problem which we’ll try to solve:

Foster Industries runs a plant making stuffed chicken breast entrees for Sam’s Club.
The chicken entrees wholesale for $5 per pound. The chicken breasts coming into
the plant have an average size of 8 ounces. While the incoming chicken breasts
vary in size around the average according to a probability distribution, the plant
must produce an entree of fixed size. Chicken breasts too small to make an entree
and any trimmings from chicken breasts which must be cut down to entree size can
be sold as ground chicken at a wholesale price of $1 per pound. What entree size
maximizes the profitability of the plant?

To understand this question, we need to understand a bit about both probability and calculus.
We can start thinking about this problem by imagining the two extreme cases: if all the chicken
is ground, the average profit per breast is $0.50. On the other hand, if the all the breasts weighed
exactly 8 ounces, we could produce a single 8 oz entree from each breast with no waste, resulting
in an average profit per breast of $2.50.

1. PROBABILITY DENSITY FUNCTIONS, MEAN, AND VARIANCE

Suppose we have a continuous random quantity X which can take on a range of values. The
distribution of values of X is given by specifying a probability density function or pdf p(x). We
can answer natural questions about the variable X in terms of its pdf p(x). For instance,

The probability that X is between a and b is =

∫ b

a

p(x) dx.

Notice that the probability that X has a value exactly equal to a is the integral
∫ a

a
p(x) dx, which

is 0 if p(x) is a continuous function. Since the pdf is mostly integrated, it makes sense that an
antiderivative for p(x) would be a useful thing to have. The particular antiderivative we like is
given by

c(x) =

∫ x

−∞
p(t) dt.

Notice that c(x) is the probability that X has a value less than x. This is called the cumulative
distribution function or cdf of X . We can see a pdf and cdf in the pictures below.

¡figure¿

If a discrete random variable X has the value 10 with probability 1/2 and the value 2 with
probability 1/2, we say that the expected value of X is given by E(X) = 10× 1/2 + 2× 1/2 = 6.
This is the notion of “expected value” that we’re all familiar with: if you have a 50% chance of
winning $20 playing cards, it should be (on average) “worth” $10 to enter the game. We can extend
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this easily to continuous random variables:

The expectation E(X) or mean value µ of a random variable X is =

∫ ∞
−∞

x p(x) dx.

It’s a common mistake to think that a random variable is “likely” to have a value near the mean.
This isn’t always the case: the mean can be an average of larger values and smaller values, each of
which can be even more common that the middle value, as in the picture below left. In the picture
below right, we see two pdfs with the same mean, but very different shapes.

¡figure¿

We can measure how much a distribution is “bunched up” around the mean value µ by computing
the variance of the distribution, which is given by

The variance V (X) of a random variable X is =

∫ ∞
−∞

(x− µ)2 p(x) dx.

that is, the variance is the mean of the squared difference between x and µ. The square root
of variance is called the standard deviation of the random variable. Distributions with a small
variance are tightly clustered around the mean value while distributions with large variance are
quite spread out.

¡figure¿

2. THE NORMAL DISTRIBUTION

The single most important probability distribution is called the “normal distribution” or ”Gauss-
ian distribution”. Its pdf p(x) makes the famous “bell curve” shape. The pdf of a normal distribu-
tion with mean µ and variance σ2 is given by

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 .

When you first see it, this distribution function looks completely weird. Why would this be the
most important probability distribution function in the world? A complete answer to this question
is somewhat beyond the scope of this class, but a partial answer is given by

Theorem 1 (Central Limit Theorem). Suppose that X1, . . . , Xn are a set of independent random
variables with any probability distribution with mean µ and finite variance σ2. Let Sn be the
sample average

Sn =
1

n
(X1 + · · ·+Xn).

Then the distribution of the variable
√
n(Sn − µ) approaches a normal distribution with mean 0

and variance σ2 regardless of the shape of the initial distribution.

This is a completely shocking result: if you average a sufficiently large collection of any kind
of random variables, the results are always approximately normal! In fact, there’s an even stronger
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version of the central limit theorem which applies to collections of random variables with differ-
ent probability density functions as long the variances are all finite and the functions obey some
technical conditions.

Example. The height of American males in the 20-29 age range (according to the
1999 census) is quite close to a normal distribution with mean µ = 69.3 inches and
standard deviation σ = 2.92 inches (for females the mean is 64.1 and σ is 2.75).
Why should this be so? Recent research (Nature Genetics 42, 565569 (2010)) shows
that height is quite complicated, with the genetic proportion of height (mostly) ex-
plained by the combination of almost 295, 000 possible genetic differences (SNPs).
If we assume that each of these differences exerts a positive or negative effect on
height with a certain probability, the fact that the resulting heights are normally
distributed is a consequence of the Central Limit Theorem!

The cumulative distribution function of the normal distribution is written in terms of the “error
function” or Erf(x), which is defined by

Erf(x) =
2√
π

∫ x

0

e−t2 dt.

In fact, the cdf of the normal distribution with mean µ and standard deviation σ is given by

c(x) =
1

2

[
1 + Erf

(
x− µ√

2σ2

)]
.

3. FOSTER INDUSTRIES AND THE CHICKEN PROBLEM

We now return to the chicken problem. We can reformulate the problem as follows:

Suppose that the incoming chicken breasts are normally distributed with mean µ lbs
and standard deviation σ lbs. Given a fixed entree size P , find the expected value
of the profit per chicken breast as a function of P .

We can see for starters that there are two cases: the chicken breast size X is less than P (in which
case the entire chicken breast is ground up) and the chicken breast size X is greater than P (in
which case one entree is produced, plus some trimmings). Another observation that we can make
here is that the additional profit for making an entree is always exactly $4P , since we would have
made $1P by selling that portion of the breast as ground chicken regardless. So the expected profit
is given by

I(P ) = 1×
∫ ∞
−∞

p(x) dx+ 4× P
∫ ∞

P

p(x) dx.
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