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3.7. References and Other Topics for Chapter 3

The best recent reference on least squares problems is [33]. which also discusses
variations on the basic problem discussed here (such as constrained, weighted,
and updating least squares), different ways to regularize rank-deficient prob-
lems, and software for sparse least squares problems. See also chapter 5 of
[121] and [168]. Perturbation theory and error bounds for the least squares
solution are discussed in detail in [149]. Rank-revealing QR decompositions
are discussed in [28, 30, 48, 50, 126, 150, 196, 206, 236]. In particular, these
papers examine the tradeoff between cost and accuracy in rank determination,
and in [206] there is a comprehensive performance comparison of the available
methods for rank-deficient least squares problems.

3.8. Questions for Chapter 3

QUESTION 3.1. (Easy) Show that the two variations of Algorithm 3.1, CGS
and MGS, are mathematically equivalent by showing that the two formulas for
rj; yield the same results in exact arithmetic.

QUESTION 3.2. (Easy) This question will illustrate the difference in nu-
merical stability among three algorithms for computing the QR factoriza-
tion of a matrix: Householder QR (Algorithm 3.2), CGS (Algorithm 3.1),
and MGS (Algorithm 3.1). Obtain the Matlab program QRStability.m from
HOMEPAGE /Matlab/QRStability.m. This program generates random matri-
ces with user-specified dimensions m and n and condition number cnd, computes
their QR decomposition using the three algorithms, and measures the accuracy
of the results. It does this with the residual ||[A— Q- R||/|| 4|, which should be
around machine epsilon ¢ for a stable algorithm, and the orthogonality of @

QT - Q — I||, which should also be around . Run this program for small ma-
trix dimensions (such as m= 6 and n= 4), modest numbers of random matrices
(samples= 20), and condition numbers ranging from cnd= 1 up to cnd= 10°°.
Describe what you see. Which algorithms are more stable than others? See
if you can describe how large ||QT - Q — I|| can be as a function of choice of
algorithm, cnd and e.

QUESTION 3.3. (Medium; Hard) Let A be m-by-n, m > n, and have full rank.

A

. " I . L i
1. (Medium) Show that [ & g ]+ [ ; ] =} ’

0
minimizes ||Az — b|lo. One reason for this formulation is that we can

has a solution where x«

apply iterative refinement to this linear system if we want a more accurate
answer (see section 2.5).

2. (Medium) What is the condition number of the coefficient matrix in terms
of the singular values of A? Hint: Use the SVD of A.
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3. (Medium) Give an explicit expression for the inverse of the coefficient
matrix, as a block 2-by-2 matrix. Hint: Use 2-by-2 block Gaussian elim-
ination. Where have we previously seen the (2,1) block entry?

4. (Hard) Show how to use the QR decomposition of A to implement an
iterative refinement algorithm to improve the accuracy of z.

QUESTION 3.4. (Medium) Weighted least squares: If some components of Az —
b are more important than others, we can weight them with a scale factor d;
and solve the weighted least squares problem min || D(Az — b)||5 instead, where
D has diagonal entries d;. More generally, recall that if C' is symmetric positive
definite, then ||z]c = (27Cx)"? is a norm, and we can consider minimizing
|Ax — bl|c. Derive the normal equations for this problem, as well as the
formulation corresponding to the previous question.

QUESTION 3.5. (Medium; Z. Bai) Let A € R™" be positive definite. Two
vectors u; and up are called A-orthogonal if u{_/-l-u,g =0. IfU € R"™ and
UTAU = I, then the columns of U are said to be A-orthonormal. Show that
every subspace has an A-orthonormal basis.

QUESTION 3.6. (Fasy; Z. Bai) Let A have the form

R
e [ ] .
S
where R is n-by-n and upper triangular, and S is m-by-n and dense. Describe
an algorithm using Householder transformations for reducing A to upper trian-

gular form. Your algorithm should not “fill in” the zeros in R and thus require
fewer operations than would Algorithm 3.2 applied to A.

QUESTION 3.7. (Medium; Z. Bai) If A= R+uvT, where R is an upper trian-
gular matrix, and u and v are column vectors, describe an efficient algorithm
to compute the QR decomposition of A. Hint: Using Givens rotations, your
algorithm should take O(n?) operations. In contrast, Algorithm 3.2 would take
O(n3) operations.

QUESTION 3.8. (Medium: Z. Bai) Let x € R" and let P be a Householder
matrix such that Pr = *£[z|ze;. Let Gi2,...,Gn_1.n be Givens rotations,
and let Q@ = G2+ Gp_1n. Suppose Qx = x||z|2e;. Must P equal Q? (You
need to give a proof or a counterexample.)

QUESTION 3.9. (Fasy; Z. Bai) Let A be m-by-n, with SVD 4 = Usv7,
Compute the SVDs of the following matrices in terms of U, ¥, and V:

1. (AFAYL,
2. (AT 4147,
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QUESTION 3.10. (Medium; R. Schreiber) Let Ay be a best rank-k approxima- and Level
tion of the matrix A, as defined in Part 9 of Theorem 3.3. Let o; be the ith |
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QUESTION 3.12. (Medium; Z. Bai) Let A. B. and C' be matrices with di- Rodi
mensions such that the product ATCBT is well defined. Let X be the set of
matrices X' minimizing ||[AXB — C||g, and let Xp be the unique member of X 2. Let
minimizing || X||r. Show that Xy = A*C'B*. Hint: Use the SVDs of 4 and such
B. in st
of tl
QUESTION 3.13. (Medium: Z. Bai) Show that the Moore-Penrose pseudoin-
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(QUESTION 3.15. (Medium) Let A be m-by-n, m < n, and of full rank. Then
min ||Az — b||3 is called an underdete rmined least squares problem. Show that QUESTIO
the solution is an (n — m)-dimensional set. Show how to compute the unique squares p
minimum norm solution using appropriately modified normal equations. QR straint in
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QUESTION 3.17. (Hard) In section 2.6.3. we showed how to reorganize Gaus-
sian elimination to perform Level 2 BLAS and Level 3 BLAS at each step in
order to exploit the higher speed of these operations. In this problem, we will
show how to apply a sequence of Householder transformations using Level 2
and Level 3 BLAS.

| PO - o e up be a sequence of vectors of dimension n. where luillo = 1
and the first i — 1 components of u; are zero. Let P = P, - P,y P,
where P, = [ — 2&{.;3;;’

1s a b-by-b lower triangular matrix 7" such that P = I — UTUT . where

is a Householder transformation. Show that there

U=[u..., up]. In particular, provide an algorithm for computing the

entries of T". This identity shows that we can replace multiplication by b

Householder transformations P; through P, by three matrix multiplica-
1 5 b Y

tions by U, T, and UT' (plus the cost of computing 7T').

[RV]

Let House(z) be a function of the vector z which returns a unit vector u
such that (I — 2uu?)z = ||z||2e1; we showed how to implement House(z)
in section 3.4. Then Algorithm 3.2 for computing the QR decomposition

of the m-by-n matrix A may be written as

fori=1:m
u; = House(A(7 : m, 1))
% =T — 2u; ?f.;.
A(t:myi:n)=PA(i:m,i:n)
endfor

Show how to implement this in terms of the Level 2 BLAS in an efficient
way (in particular, matrix-véctor multiplications and rank-1 updates).
What is the floating point operation count? (Just the high-order terms
in n and m are enough.) It is sufficient to write a short program in the
same notation as above (although trying it in Matlab and comparing
with Matlab’s own QR factorization are a good way to make sure that
you are right!).

3. Using the results of step (1), show how to implement QR decomposition
in terms of Level 3 BLAS. What is the operation count? This technique is
used to accelerate the QR decomposition, just as we accelerated Gaussian
elimination in section 2.6. It is used in the LAPACK routine sgeqrf.

QUESTION 3.18. (Medium) It is often of interest to solve constrained least
squares problems, where the solution x must satisfy a linear or nonlinear con-
straint in addition to minimizing [|Az — b||>. We consider one such problem
here. Suppose that we want to choose z to minimize ||Ax bl|> subject to
the linear constraint Cz = d. Suppose also that A is m-by-n, C' is p-by-n,
and C has full rank. We also assume that p < n (so Cx = d is guaranteed to
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be consistent) and n < m + p (so the system is not underdetermined). Show

: : . : 3 A, :
that there is a unique solution under the assumption that | ¢ | has full column

rank. Show how to compute z using two QR decompositions and some matrix-
vector multiplications and solving some triangular systems of equations. Hint:
Look at LAPACK routine sgglse and its description in the LAPACK manual
[10] (NETLIB/lapack/lug/lapack_lug.html).
QUESTION 3.19. (Hard; Programming) Write a program (in Matlab or any
other language) to update a geodetic database using least squares, as described
in Example 3.3. Take as input a set of “landmarks.” their approximate coordi-
nates (z;,y;), and a set of new angle measurements f; and distance measure-
ments L;;. The output should be corrections (0x;, 8y;) for each landmark. an
error bound for the corrections, and a picture (triangulation) of the old and
new landmarks.

QUESTION 3.20. (Hard) Prove Theorem 3.4.
QUESTION 3.21. (Medium) Redo Example 3.1, using a rank-deficient least

squares technique from section 3.5.1. Does this improve the accuracy of the
high-degree approximating polynomials?
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