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Theropelengthof a space curve is usually defined as the quotient of its lelngits thickness the radius of
the largest embedded tube around the knot. This idea wasdedeo space polygons by Eric Rawdon, who
gave a definition of ropelength in terms of doubly-criticalfslistances (local minima of the distance function
on pairs of points on the polygon) and a function of the emteaingles of the polygon.

A naive algorithm for finding the doubly-critical self-déstces of am-edge polygon involves comparing each
pair of edges, and so takéxn?) time. In this paper, we describe an improved algorithm, thasethe notion
of octrees which runs inO(n log n) time. The speed of the ropelength computation controls énpnance
of ropelength-minimizing programs such as Rawdon and P&I®OROS.

An implementation of our algorithm is freely available unttee Gnu Public License.
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1. INTRODUCTION Definition 1. If P, is a polygonal curve irR? with edges
e1,...,en, anda; is the exterior angle of the polygon made
For a smooth curve in 3-spacepelengthis the quotient DY edges:; ande;,, then let
of the length of the curve by ittickness the diameter of
the largest embedded tube around the curve. Minimizing ro- minRad(P,) = min leil . |ei+1|‘ . @
pelength is the same as fixing the diameter of the tube and i€l...n | 2tan (%) 2tan (%)

minimizing its length— if the tube is knotted, we are pulling
the knot tight, and so the minimum ropelength curves in an
knot type are often calletight knots. Since the problem is

such a natural one, the definition of thickness has been dis- o : :
covered and rediscovered by several authors [1, 3, 12], wit%?(x’ y) = | —y|, and say that a chotd, of I% is apair of

the earliest results known (to these authors) on the problerp osest approachf 2, ifitis a local minimum of the distance
credited to Krotenheerdt and Veit in 1976 [11]. unction. The length of the shortest such chord is denoted

In the past decade, there has been a great deal of interestl_i)nOCA(P")' We then definénicknessby
{ 2minRad(P,)

where we take,, 1 = e; if the polygon is a closed curve, and
Makei ¢ 1,...,n — 1 otherwise.
Then we define the distance functién: P, x P,, — R by

exploring the geometry of tight knots; the definition of thic
ness has been refined and fully understood [9], it has been
shown thatC!>! minimizers exist in each knot type [5, 7, 8], L o .
some minimizing links have been found [5], and a theory of e note that this is1ot Rawdon's original definition of
ropelength criticality has started to emerge [4, 19]. The dePolygonal thickness [15], which used the minimum distance

velopment of this theory has been fueled by a steady streafffWeen all “doubly-turning” pairs of the polygon and nattju.
of numerical data on ropelength minimizers, from Pieranski 110S€ pairs which were local minima of self-distance. Ttie di
original SONO algorithm [13] and Rawdon’s TOROS [14], ference is made clear when one considers a regularl-gon
to second-generation efforts such as Smutny and Maddockif? the plane, which has no pairs of closest approach. In this

biarc computations [17] and the RIDGERUNNER project of ¢aSéminRad compensates for the absencé6iCA lengths
Cantarella, Piatek, and Rawdon. and the results of the definitions are identical. In fact, we

All of these algorithms have in their innermost loops a com-coniecture that the definitions are equivalent in general, a
putation of the ropelength of a curve in 3-space. Intuifiyel INtend to address the subject in a future publication.
the thickness of a tube is controlled locally by the curvamifr The factorA in our definition requires some explanation.
the core curve, and globally by the approach of “distant: sec FOr @ Smooth curv&, fixing SThiy (P) = 1 models a tube of
tions of the tube. Rawdon, in his thesis [15], defined a radiu%n't diameter whose diameter of curvature is bounded below
of curvature for a corner of a polygon. A given corner has two?Y A: WhenA = 1, the tube is perfectly flexible: it can make
circles which are tangent to both incident edges and tangeft Y ~Shaped bend with a semicircle of unit diameter and two
to one of the edges at its center. He proved that we can defi@rallel sections of tube in contact along a straight lind.ew

a sensible polygonal radius of curvature as the radius of thé > 1, We modela more realistic “stiff” rope whose minimum
smaller of those two circles. diameter of curvature is somewhat higher.

More precisely: As_computing the radi_us _of curvature at a given corner
only involves the edges incident to that corner, computing
minRad(P,) requires onlyO(n) time. On the other hand,
all previous efforts to compute thickness have used sonie var

*Email: asht ed@ga. edu ant of Algorithm 1 on page 2 for computifOCA(P,,). This
TEmail: cant ar el @rat h. uga. edu algorithm is clearlyO(n?). So we have focused our attention
on improving thePOCA(P,,) calculation.

SThix(P,) = min ,POCA(Pn)} . (2



for i = 1tondo
for j=i+1tondo
checke; ande; for local min chords;
compare to previous shortest local min chord;
end
end

Algorithm 1: Standard Algorithm foPOCA(P,).

) ] FIG. 1: We see the three cases in the proof of Lemma 2.1, frinole
Our algorithm concentrates on reducing the total number ofight anedge-edgeair, avertex-edgepair, and avertex-vertexpair.
edge-edge checks performed by grouping the edges accordingthe center and right figures we s&e (z) andT* (z), and in the
to their positions in space into a data structure known in-comrighthand figure we also s&&™ (y). We have not drawfi™ (y), but
puter graphics as asctree We will use the octree to optimize it would be colinear with;v;41 as withT ™ (z).

the inner loop of Algorithm 1, and show that we can isolate

a constant-size set of candidatges for any givene; in time () @
O(logn). The new algorithm will then perforr®(nlogn)

edge-edge checks, and one octree construction (which will €;
also require time&)(nlogn)), for a significant improvement

in speed. Lul

At this point, the reader might be concerned that our (signif
icantly more complicated) algorithm loses its theoretaad
vantage over Algorithm 1 for most of practical interest due

to large constants on th@(n log n) terms. In fact, this is not Vic1
so (and we invite the reader to consult the performanceghart
of Section 6 for an empirical verification of this claim). FIG. 2: The shaded area represents the region of space iin wigc

second poiny of a locally minimal pairzy can lie whenz is on the

edgee; or is the vertexv;. This region consists of the infinite slab
2. EDGE-EDGE CHECKS of parallel planes normal te; which pass through;, together with

the wedge extending from vertexin the outward direction from the

The quantityPOCA(P,,) is defined to be the smallest local vertex.

minimum of the distance functioP(z,y) on pairs of points
on the polygon?,. To understand it, we first make an obser- g Figure 2
vation about the nature of these local minima. '

Lemma 2.1. If we orient the curveP, and letT—(z), T+ (z) This leads naturally to the Lemma:
denote the inward and outward tangent vectorsRyf at «
(they are different if and only if is a vertex with nonzero
exterior angle). Every pairy which locally minimized :
P, x P, — R has

Lemma 2.2. If xy is a pair of points onP,, which locally
minimizesD, andz is on the half-open edgg — {v;+1}, then
y is in the rampR;.

T (z)-(y—z)>0 TH@) (y—2) <0 3) Proof. If z is in the interior of the edge, Lemma 2.1 implies
i -0 T+ <0 @) thatxy must be perpendicular tq, and hence thaj is in the
W) (w—y) = () (@—-y) <0. union of normal planes through. If x is atv;, the inequalities
We note that if: is in the interior of an edge, then the above above are those of the statement of Lemma 2.1. a

relations forceT* (z) - (z — y) = 0. _
It may seem like we have only rephrased Lemma 2.1. In

Proof. There are three cases: either batndy are on the 3¢ \ve have gained an important geometric insight abaut th
interior of an edge, one is an eplge point and one a vertex, Hroblem-— for any edge;, the rampR; will probably be very
both are vertices, as shown in Figure 1.sAthe distance from o556 10 4 thin slab which only intersects the remainde,of

y must not decrease to first order as one moves away from, 5 few places (see Figure 3 on page 3). If we can isolate
z in either direction along the curve: a computation verifiesihase intersections quickly, we can complete the task of find

that this is equivalent to the first line of the statement @f th ing POCA(P,) by a more detailed comparison of these can-
Lemma. A similar argument atcompletes the proof. [ didates ta,. "

We now make a definition:

Definition 2. The ™ ramp, R; of a polygonal curveP, is 3. THE OCTREE DATA STRUCTURE
the union of the planes through edge= v;v;;1 with normal

vectorv; 1 —v;, together with the wedge of vectatsdefined

by the inequalities With the discussion in Section 2, we have reduced the prob-

lem of identifying edges; which may form locally minimal
(w—2v;)- T (v;) >0 (w—uv;)-TH(v;) <0. (5) pairs with points on edge; to the problem of finding which
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with the final performance of our implementation, we now
present a more insightful octree construction algorithncivh
has the same asymptotic time bound@fn log, n), but is
much faster than Algorithm 2 in practice.

To describe the new algorithm, we start with a numbering
scheme. As we mentioned before, it is conventional to denote
the upper right quadrant of the plane by the numheand
proceed counterclockwise to the fourth quadrant on thedowe
right. A more natural numbering scheme assigns each quad-
rant a2-digit binary numberd,d,, whered, = 0 has lower
values ofz (the left hand side) and, = 1 has higher values
of = (the right hand side), whilé, = 0 denotes lower values
FIG. 3: A typical ramp in a a trefoil of about 90 edges consists  Of y (the bottom half), whilel, = 1 denotes higher values of
a very thin slab which only intersects the remainder of thetkn  y (the top half). For octants in 3-space, we could assign three
a few places. If we could isolate ramp-knot intersectioniskdy, it digit binary numbers, d, d. similarly.
would reduce the number of edge-edge checks required tolfind t  Now consider the process of quadtree construction again.
shortes?OCA. At the first subdivision, we divide the point set in two parys b
z-coordinate and by-coordinate. This gives us four groups
of points, which we can number as above by the 2-digit binary

edggs off%, |3t(irsetcteits rartan.. :[I;]o do tso effllgently, we will numbersi, d,. These groups are the members of the 4 boxes
need a new data structure By the octree [10]. in the next level of the tree, as we saw above.

: The octree representation of a collection of poin_ts in space But there is something else to notice here: If the collection
is a tree where each node represents the bounding box ofoq points is sorted by: and byy, the digitsd, andd, for any

subset of that collection. The eight daughter nodes of apare - ; - . -
represent the bounding boxes of subsets of the points in t’?amcular point are the most significant binary digits cditth

L ; . ) oint’s positionin the sorted array. Further, if we continue
parent box created by dividing that point set in two in each o P Y

; N i 0 subdivide the points into fourths byandy, the next pair
the coordinate directions. The most detailed octree repres of binary digits associated to each poid,d,, will be the

tat!o?bofta}tpomt set ha? le"’t‘f nodtz)zyvfg_ch ea;l:h ctohntam_aism?lnext pair of binary digits in that point’s position in theandy
pointbut itis common to stop subdividing when the point s Sarrays as well. Again, for octrees the situation is simita,
are smaller than some fixed number. Figure 4 illustrategthre

. A . “we sort byz as well, and create a sequence of 3-digit binar
levels of this process for a set of points in the plane, Wh'le(orl—digit)gctal) numbers q 9 y

Figure 5 shows the resulting tree. Continuing this process, we see that each point in the col-

Fro_m the descr|pt|0r_1 above, one can observe that it is €a3¥ction has a uniquectal tag generated by interleaving the
to build an octree using the recursive procedure of Algo-Oligits of its position in the sorted, y, andz arrays. This

rithm 2. tag specifies its position in the octree. Further, if we made a
Data : A node of the tree, a corresponding bBxand a listof ~ least-first traversal of the octree (descending to octantise

points. order of their octal labels), the order in which we would en-
Result : An octree representation of this point list. counter the points would be by increasing octal tags. These
if the list of edges is shorter than some fixédhen observations give rise to a new octree-building algorithm:
assign these points to this node; ’
make this node a leaf of the tree; Data : A list of points inR3.
return; Result : An octree representation of point list.
else Sort the points by, y, andz coordinates;
partition B into 8 child boxes; Shuffle binary digits of array positions to create octal ftags
for each child boxdo Sort again by octal tags;
create a sublist of points intersecting that box; Build tree from this traversal-ordered list;
recurse if this sublist is nonempty; ) o .
end Algorithm 3 : A faster Octree-building algorithm
end

. i The problem of building a tree from a traversal-ordered list
Algorithm 2: One way to Build an Octree of its contents is a standard one in computer science. Our par
ticular solution is discussed in some detail in Section BWel
For ann-point dataset, if one chooses each box partitionWe note that building the octree from the list also has time
so that no child box contains more than half the total num-complexity O(nlogn), since every node in the octree must
ber of points in the parent box, the number of levels in thisbe visited, but that this algorithm is still much faster thiaa
tree is less thaibg, 1, and one expects this algorithm to run previous method of octree construction (Algorithm 2). We ar
in O(nlog, n) time. However, this algorithm involves a non- among many rediscoverers of this method of octree construc-
trivial amount of overhead in keeping track of lists of psint tion, which traces its roots to the “linear quadtree” comstr
and making procedure calls. Since we are very concernetion of Gargantini [6].



FIG. 4: From left to right, these pictures show three stagdaheé construction of a quadtree representation (the pharaion of an octree
representation) of a set of points. On the left, the bountimgof the entire point set is computed. This is the root ofitbe. In the center, we
see the points divided in two by andy coordinates, and then grouped by quadrant into four sust@hs, with bounding boxes as shown.
On the right, we again divide the subcollections and grotp $abquadrants. The resulting 3-level tree is shown inr€igu

Data : An octree node, the current minimum strut lengéind
B a ramp frome;.

/4 \\) Result : All struts betweere; and edges in this octree.

ﬂ%\ %%2\ 5;3\ %%1\ if this box is within/ of e; then
Bi11 Bi2 Bis Bia Bai Bas Bas Bz Bsy Ba1 Bas Bas i thiIfSt?]?s)(l;r(])t)((eli’:eacrgat;]ﬁel’:mp froep then
}l Z ‘1/ ;/ ; § ‘1/ ; § ; ‘1/ g check the (at mostV) edges against;;
if struts are foundhen
updatel;
FIG. 5: This picture shows the quadtree constructed in Eigur return struts;
in a more familiar form. The boxes are labelled accordinghi® t end
usual numbering convention for quadrants of the plane, eviie else
first quadrant is on the top right and numbering proceedingster- for each nonempty child nodto
clockwise. The final numbers show the number of points in éath | recurse on the child node and the ramp:
box, and should be compared to the boxes shown in Figure 4in th
right-hand image. end

end

end

4. THE CORE OF THE ALGORITHM end

Algorithm 4 : Recursively identifying candidatg’s.

We can now describe our algorithm. Given aywe must
identify all edges:; which might be part of a shorteBOCA . )
with ¢;. Such edges must obey two conditions: they must/Ve have seen Algorithm 1 outperform Algorithm 4 only for

intersecte;’s ramp, and they must be closer ¢p than the a pa_rticularl_y bad class of examplgs:_ knots_ formed by con-
shortestPOCA found so far. Since both conditions can be N€cting vertices chosen at random inside a fixed volume. (See
checked for sub-boxes of the octree, we can use them to elinpection 6 for details.)
inate groups oé; from consideration before performing edge-
edge checks.
In pseudo-code, this is a collectionwfcalls to the (recur- S.
sive) Algorithm 4 (one for each;). We refer to the entire
algorithm minRad computation, octree construction by Al-  While being able to replace an(n?) algorithm with one
gorithm 3, and calls to Algorithm 4 for each edgefastrope.  which isO(nlogn) will certainly save timeor large enough
Each call to this algorithm might require it to traverse thevalues of:, there is no guarantee that this will help with prob-
entire depth of the octree before reaching leaf nodes and pediems of practical size. Indeed, Algorithm 4 threatens to-con
forming the edge-edge checks. Yet this depth is boundedume a fair amount of overhead, while Algorithm 1 involves
above bylog, n, so the expected running time for the algo- only edge-edge checks, which could be coded very efficiently
rithm is O(logn). In pathological cases, many or all of the So in this section we turn our attention from thelgn” to
boxes may intersect the ramp. If all the boxes intersechall t its multiplier — from mathematics to program design. In this
ramps, this algorithm may be asymptotically slower than thediscussion, we’ll refer to function names and prototypestr
naive one: we are forced to vigit(n log n) tree nodes against our publically available library version ddctrope, which is
each ofn edges, for a total time complexity ¢¥(n?logn). calledl i boct rope.

IMPLEMENTATION ISSUES



as the edge’s length and its starting vertekynoct .

As we creatdy oct , we also buildoy x, by _y andby _z,
threen-element arrays of pointers to the elementbyfoct .

We then sort these hy, y, andz order. The result is shown in
Table II.

We divide by x, by _z, and by_z into sections ofm
points each (shown in Table Il by spacing) and walk through
them, labeling the edges with the binary numbers of the sec-
tions in which they lie in the following unusual fashion: if
T = T1T2 " Tp—1,Y = Y1 Yr—1 andz = Z1-+2¢—1 are
the respective box numbers and their binary represenggtion
we interleave those bits to produce a single octal number,
21Y1T122Y2 - - - Ye—12¢—1. This is theoctal tagof Section 3

FIG. 6: Our example is a polygonal Hopf-link approximaticome ~ above®. We then sorby _oct by that octal tag, as shown in
posed of two regular pentagons. The lighter lines aredtlséruts Table Il on page 6.
for which theOctrope algorithm is searching. They extend fromthe  As we discussed in Section 3, the sortgdoct array is

midpoints of one side of each interlocked polygon to all the-m i the same order as that of a traversal of the full octree.
points of the edges of the other.

Building the tree. The actual building of the octree can be

Component approached in various directions. We could simply use the
1 2 by_oct array with no futher indexing, traversing it with bi-
voo = (14.5,20,0) w10 = (0,0,14.5) nary searches (an approach which saves space at the expense
vor = (235, ~7.6,0) w1 ~ (0,27.6,23.5) of time). On the other hand, if we are to index it, we can build
:gi - &3,2?'32)6,0) :12 - 587 3?2: (1)23.5) our index in a top-down fashion, establishing the root node
Vos = (_14.5: 20,0)  vis = (O: 0, —14.5) and building out to the leaf nodes. We can build in a bottom-

up fashion, partitioning off parts dfy _oct as leaf nodes and
collecting them together in groups until we reach a singte to
TABLE I: The approximate vertices of the pentagonal Hopklin node. Or we can (and do) use a “sideways” or “limb-by-limb”
shown in Figure 6 are given here. We have rounded the number@pproach. We take an array 6tox pointers and on them
to the nearest tenth to simplify the table. This does notcaffiee  build the “left-hand limb” of the tree, all the way from the
octree-building procedure under discussion, but woulcthghathe  smallest numbered leaf box down to the root box. Each of the
strut picture shown in the figure above. boxes knows its first edge tmy _oct and how many edges it
has (which are grouped together thanks to the octal sort).
) ) _ Then we walk once throughy_oct , watching the octal
The depth of the octree. Since searching the octree involves tags. As long as the tag is the same as the one before it, we
some overhead, it is to be expected that we will not get thgjmply increment the count of edges in that box. When it
best performanpg from the deepest octree. Rather, we expedianges, we do a binaXORwith the previous tag to see how
it to be more efficient to group some number of edges in eacfj,ych they differ (that is, which of the octal digits changed)
box and do simple checks between the current edge and thgat tells how many of the boxes in this “limb” are complete.
edges in an implicated leaf box. _ After some cleanup (which may include pruning the “limb”)
We implement this by bounding the maximum number ofye |eave those boxes and the create the new ones necessary

levels in the tree by some This can be set by the user, using g hold this edge. Figure 7 on page 7 shows our example tree
theoctreeset | evel s() call orit will defaultto/ = after this process is complete.

[2 log, n| (where[r] is the least integer greater than or equal

to r), a formula at which we arrived empirically. It also uses Searching the tree. We have now created the tree and can
m, the maximum number of edges in any leaf box, which ismove into using it. We can now check each edge and its ramp
given bym = [ 57 ]. against the tree, looking for leaf boxes on which to run edge-
edge checks. Since struts are symmetric, we do not ever want
to compare the same pair of edges twice. To avoid this we do
the edge-edge check only if the edge in question preceeds our

A concrete example. We will now trace through our im-
plementation of the fast octree construction procedurelof A
gorithm 3 for a particular example: a Hopf link where each
edge is given by a regular pentagon (see Figure 6 and Table I).
In this example/ would default to3 andm would then also

equal3.
q 1To construct octal tags, we take a single pass simultangdhsbugh

Sorting edges. The algorithm begins by gathering all of the by, by.y, andby z, starting with the second box, which has binary
edges into a singla-element array which we caltiy_oct ) tag00- - - 01. As we walk the arrays, we spread the bits of the box number

. . . apart (e.g.1101 — 1001000001) using a lookup table similar to that of
To avoid double-checking edge pairs later on, we need each gy, ko 116), shift them left 1 bit foy or 2 bits forz, andCR them with the

edg.e to “_belong” to only one Of.the !eaf boxes in our tree. SO tag constructed so far. The tags are thus built up over tiregaaranteed
we identify each edge by its midpoint and store that, as well to be correct only when we reach the end of the pass.



by _x by_y by_z

€03 ( 19 6.2 0) €02 ( 11. 75 —16. 15 O) €13 : (O 138 —19)

eo2 : (—11.75,—16.15,0) eor : (11.75, —16.15,0) ez : (0,36.15, —11.75)
€4 - (0 20 0) €14 : (0 0 0) €oo - (19 6.2 0)
eio : (0,13.8,19) eos : (—19,6.2,0) eor : (11.75, —16.15, 0)
ein : (0,36.15,11.75)  eoo : (19,6.2 0) eoz : (—11.75,—16.15,0)
e12: (0,36.15, —11.75)  e1o : (0,13.8,19) eos : (—19,6.2,0)

eis : (0,13.8,—19) eis : (0,13.8,—19) eoa : (0,20,0)

€14 : (0 ) €04 (O 20 O) €14 : (O )

eor : (11. 75, —16.15, 0) en:(0,36.15,11.75) e : (0, 36.15, 11. 75)
eoo : (19,6.2,0) ei2 : (0,36.15, —11.75)  eio : (0,13.8,19)

TABLE II: In this table, we see th&0 edges of the pentagons in Table | sortedabyy, andz. The edges are sorted by their midpoints,
and numbered by the index of their first vertices. The spangnds us that sincer = 3, we are grouping the midpoints by threes when
constructing boxes.

edge z-box y-box z-box bits octal decimal Algorithm

ez O 0 1 000100 04s 4 Standard Octrope Max depth

€03 0 1 1 000110 06g 6 Octree levels 1 9 13

eoo 3 1 0 001011 13g 11 Edge-edge checks, 121,251 32,033 8189

€o1 2 0 1 001100 14s 12 Box/ramp checks0 51,131 93,187

e12 1 3 0 010011 23g 19 Time 1.9 sec 0.16 sec 0.22 sec

ez 2 2 0 011000 30s 24

ero 1 1 3 100111 47s 39 TABLE IV: This table compares the performance of the
elq 2 0 2 101000 508 40 I'i boct r ope library on a2500-edge random walk at three levels of
eoa O 2 2 110000 60s 48 tree depthi (the standard(n?) algorithm),[ 2 log, n] (Octrope),

enn 1 2 2 110001 61g 49 and13 (the maximum resolution). We see a trade-off between edge-

edge checks and box/ramp checks as the octree resolutieages.
Increasing the number of levels in the octree frBrto 13 cuts the
TABLE III: This table contains the edges with their box numsbim ~ number of final edge-edge checks performed by a factat, dfut
thex, y, andz directions, the binary numbers generated by interleay-doubles the number of box/ramp checks. Since the box/ramgksh
ing the bits of these box numbers, and the corresponding tagis. ~ are more computationally expensive, this is not a favoredtie, and
(in octal and decimal). The data is sorted by octal tag, arappears  the overall execution time increases.
in the same order in which it appears in tye_oct array. In prin- The data shows that we have been very effective at reducégutim-
ciple, as many as: edges can share an octal tag, which means thaber of edge-edge checks. On avera@etrope compares each edge
they occupy the same leaf node of the resulting octree, mitites  to less thari3 carefully chosen candidates when searching for struts.
not happen in our example.

chosen edge iby _oct By so doing, we can eliminate entire
boxes because their lowest edges is not in range. The savings

from this technigue has been significant. . .
q 9 levels of octree resolution, as in Table V.

It is worth noting thaDctrope does not always outperform
the standard algorithm. For instance, for random knots con-
structed by choosing vertices inside a fixed volume, neither
) ] ] ramp-checking nor distance checking eliminates a sigmifica

We tested our algorithm using1a25 Ghz G4 Macintosh  hymper of pairs from consideration. The edges are simply
computer on high-resolution discretizations of simplet&no 50 long, and pass too close to one another to decide in ad-
and on random walks. To make the tests, we compared thgynce which pairs are likely to control thickness. But even i
run times betweehi boct r ope with the tree depth settd  thjs casel i boct r ope was only a few times slower than the
(forcing @ edge-edge checks) and with the default treestandard algorithm.
depth of¢ = [% log, n} We compiled our code witlgcc Currently, minimizing the ropelength 860-edge knots by
3. 3 and used the O3 option. simulated annealing is a relatively taxing task, requigarfgw

For both of these classes of kndts,boct r ope was much  weeks of computer time on a standard desktop machine. Our
faster than our reference implementation of Algorithm B-Fi  timings above indicate that a simulated annealer built rmdou
ure 8 shows the relative performance of the two algorithmg i boct r ope could do the job5 times faster, or, alterna-
on trefoil knots. It is also worthwhile to compare the pesfor tively, minimize the ropelength of a000-edge knot in the
mance of our code for a 2499-edge random walk at differensame time.

6. PERFORMANCE
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FIG. 7: These two trees show the octree as initially constdiftop) and after our pruning procedure (bottom). Thisdrasiped some edges
together in single nodes (such @s andeo3) and deleted some nodes with only one child (suclBag. It is desirable to eliminate extra
nodes of this kind, since even though we keep the octal treerapact in memory as possible, each jump from node to nodethenrisk of
straying outside the memory cache of the processor andringwa delay as more information is loaded from main memory.
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FIG. 8: The two plots show the time in seconds required to fopklength for trefoils (solid lines) and random walks (dablines) as a
function of edgelength. The timings were computed dn2d Ghz MacintoshG4 computer, and represent averages aweruns (for times
above one second), @00 runs (for times below one second). Some variation is stilent in the right-hand graph, which is probably due to
inaccuracy in the systemts ne() function.

The top lines in each graph show the time required by the atar@(»?>) algorithm, while the bottom lines show that of theboct r ope
library. Notice that the right-hand graph shows thaboct r ope is faster for trefoils of more than abou®0 edges, and essentially all of the
random walks tested.

On the right-hand graph, the standard algorithm’s perfoadits toO(n?), as expectedOctrope’s performance, on the other hand, appears
to fit O(n4/3). Our clustering algorithm appears to be significantly mdfective for random walks than trefoils. We conjecture tthas is
due to the fact that the walks occupy more volume than theitsebut we do not have a theoretical model for this effect.
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7. CONCLUSIONS AND FUTURE DIRECTIONS linear in time and second, the subsampled knots can be han-
dled by Octrope itself. The disadvantage of the multireso-

computing the ropelength of polygonal space curves in tim@r other very complicated knots, such as large protein back-
O(nlogn) and contrasted it to the previous standard a|gobones, as their subsamples will not be close to the original
rithm which required timeO(n?). We have implemented CUrve. _ _ _ _
the algorithm efficiently in ANSI C, and given timings which We yvould also_ like to observe that while the discussion
show that our algorithm is also much faster in practice tharfPove is phrased in terms of polygons, the general octrep/ra
previous methods used in the field. method is equally applicable to other discretizati_on sabem
The increase in speed from using our method should enabfér curves, such as biarcs. In that case, the relative spted a
researchers to consider significantly more complicatedskno vantage of this algorithm should be greater, since the “edge
and to get much higher-resolution data for simpler knotshBo €dge check” for a pair of arcs or spline segments is much
of these are valuable goals. It has always been a goal of thdower than the edge-edge check for polygonal edges de-
geometric knot theory community to apply our results todarg Scribed above. _ _
biomolecules such as DNA and proteins. Since these curves /N conclusion, we hope that our algorithm and implementa-
may involve thousands of vertices, they have been out of thon will become a standard software component in numerical
reach of tools based on Algorithm 1. investigations of the ropelength proplem. If othe_rs can im-
However, our methods do not entirely settle the problem ofPfove our code, we hope that they will do so, and invite them
fast ropelength computation. As mentioned in the introduci0 contact us. We also hope that our public release of the li-
tion, Cantarella, Fu, Kusner, Sullivan, and Wrinkle [4] bav DPrary (the first that we know of in geometric knot theory since
discovered tiny straight segments in a ropelength-ctisica- ~ Brakke’s Evolver [2]) will inspire others in the field to con-
ple clasp. These segments are a few one-thousands of one utiipute from their personal and laboratory collections afie
in length out of a total clasp length of abdtinits (a similar  t0 the public domain. N
clasp has been constructed by Starostin [18], though he does Those interested in obtaining the code should browse
not prove it is critical). To resolve these very small scalep (0 http://ada. math.uga. edu/research/sof tware/
nomena numerically will require ropelength-minimized eon oct rope/ for further information.
figurations with tens of thousands of edges.
At about3 seconds per ropelength computation on a stan-
dard desktop machine, it would simply be untenable to mini- 8. ACKNOWLEDGEMENTS
mize the ropelength of 20, 000-edge knot using our library
and simulated annealing on a desktop machine. However, Oc- The authors are grateful to many colleagues for discussions
trope parallelizes well, so one could bring supercomputingabout ropelength and algorithms, including Herbert Edels-
cluster machines to bear on the problem, reducing the timbrunner, Mark Peletier, and John Sullivan. The 2002-2003
to evaluate a configuration to tenths or hundredths of a sed/IGRE group in Geometric Knot Theory (in particular Xan-
ond. This might allow for a long enough cooling schedule toder Faber, Chad Mullikin, and Nancy Wrinkle) contributed
resolve some small-scale phenomena, but there is no guarae- our understanding of the computational issues surround-
tee. ing ropelength. And Monica Shaw and Allison Diana, mem-
We are hence considering two further approaches to thbers of the 2003 Summer Undergraduate Research Experi-
problem: theMultiresolution Ropelength Algorithm and  ence, worked on a prototype implementation of the octrope
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