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Theropelengthof a space curve is usually defined as the quotient of its length by its thickness: the radius of
the largest embedded tube around the knot. This idea was extended to space polygons by Eric Rawdon, who
gave a definition of ropelength in terms of doubly-critical self-distances (local minima of the distance function
on pairs of points on the polygon) and a function of the exterior angles of the polygon.

A naive algorithm for finding the doubly-critical self-distances of ann-edge polygon involves comparing each
pair of edges, and so takesO(n2) time. In this paper, we describe an improved algorithm, based on the notion
of octrees, which runs inO(n log n) time. The speed of the ropelength computation controls the performance
of ropelength-minimizing programs such as Rawdon and Piatek’s TOROS.

An implementation of our algorithm is freely available under the Gnu Public License.
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1. INTRODUCTION

For a smooth curve in 3-space,ropelengthis the quotient
of the length of the curve by itsthickness: the diameter of
the largest embedded tube around the curve. Minimizing ro-
pelength is the same as fixing the diameter of the tube and
minimizing its length— if the tube is knotted, we are pulling
the knot tight, and so the minimum ropelength curves in any
knot type are often calledtight knots. Since the problem is
such a natural one, the definition of thickness has been dis-
covered and rediscovered by several authors [1, 3, 12], with
the earliest results known (to these authors) on the problem
credited to Krötenheerdt and Veit in 1976 [11].

In the past decade, there has been a great deal of interest in
exploring the geometry of tight knots; the definition of thick-
ness has been refined and fully understood [9], it has been
shown thatC1,1 minimizers exist in each knot type [5, 7, 8],
some minimizing links have been found [5], and a theory of
ropelength criticality has started to emerge [4, 19]. The de-
velopment of this theory has been fueled by a steady stream
of numerical data on ropelength minimizers, from Pieranski’s
original SONO algorithm [13] and Rawdon’s TOROS [14],
to second-generation efforts such as Smutny and Maddocks’
biarc computations [17] and the RIDGERUNNER project of
Cantarella, Piatek, and Rawdon.

All of these algorithms have in their innermost loops a com-
putation of the ropelength of a curve in 3-space. Intuitively,
the thickness of a tube is controlled locally by the curvature of
the core curve, and globally by the approach of “distant” sec-
tions of the tube. Rawdon, in his thesis [15], defined a radius
of curvature for a corner of a polygon. A given corner has two
circles which are tangent to both incident edges and tangent
to one of the edges at its center. He proved that we can define
a sensible polygonal radius of curvature as the radius of the
smaller of those two circles.

More precisely:
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Definition 1. If Pn is a polygonal curve inR3 with edges
e1, . . . , en, andαi is the exterior angle of the polygon made
by edgesei andei+1, then let

minRad(Pn) = min
i∈1,...,n

{

|ei|

2 tan
(

αi

2

) ,
|ei+1|

2 tan
(

αi

2

)

}

. (1)

where we takeen+1 = e1 if the polygon is a closed curve, and
takei ∈ 1, . . . , n − 1 otherwise.

Then we define the distance functionD : Pn ×Pn → R by
D(x, y) = |x − y|, and say that a chordxy of Pn is apair of
closest approachof Pn if it is a local minimum of the distance
function. The length of the shortest such chord is denoted
POCA(Pn). We then definethicknessby

SThiλ(Pn) = min

{

2 minRad(Pn)

λ
, POCA(Pn)

}

. (2)

We note that this isnot Rawdon’s original definition of
polygonal thickness [15], which used the minimum distance
between all “doubly-turning” pairs of the polygon and not just
those pairs which were local minima of self-distance. The dif-
ference is made clear when one considers a regular2n+1-gon
in the plane, which has no pairs of closest approach. In this
case,minRad compensates for the absence ofPOCA lengths
and the results of the definitions are identical. In fact, we
conjecture that the definitions are equivalent in general, and
intend to address the subject in a future publication.

The factorλ in our definition requires some explanation.
For a smooth curveP , fixing SThiλ(P ) = 1 models a tube of
unit diameter whose diameter of curvature is bounded below
by λ. Whenλ = 1, the tube is perfectly flexible: it can make
a “U”-shaped bend with a semicircle of unit diameter and two
parallel sections of tube in contact along a straight line. When
λ > 1, we model a more realistic “stiff” rope whose minimum
diameter of curvature is somewhat higher.

As computing the radius of curvature at a given corner
only involves the edges incident to that corner, computing
minRad(Pn) requires onlyO(n) time. On the other hand,
all previous efforts to compute thickness have used some vari-
ant of Algorithm 1 on page 2 for computingPOCA(Pn). This
algorithm is clearlyO(n2). So we have focused our attention
on improving thePOCA(Pn) calculation.
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for i = 1 to n do
for j = i + 1 to n do

checkei andej for local min chords;
compare to previous shortest local min chord;

end
end

Algorithm 1 : Standard Algorithm forPOCA(Pn).

Our algorithm concentrates on reducing the total number of
edge-edge checks performed by grouping the edges according
to their positions in space into a data structure known in com-
puter graphics as anoctree. We will use the octree to optimize
the inner loop of Algorithm 1, and show that we can isolate
a constant-size set of candidateej ’s for any givenei in time
O(log n). The new algorithm will then performO(n log n)
edge-edge checks, and one octree construction (which will
also require timeO(n log n)), for a significant improvement
in speed.

At this point, the reader might be concerned that our (signif-
icantly more complicated) algorithm loses its theoreticalad-
vantage over Algorithm 1 for mostn of practical interest due
to large constants on theO(n log n) terms. In fact, this is not
so (and we invite the reader to consult the performance charts
of Section 6 for an empirical verification of this claim).

2. EDGE-EDGE CHECKS

The quantityPOCA(Pn) is defined to be the smallest local
minimum of the distance functionD(x, y) on pairs of points
on the polygonPn. To understand it, we first make an obser-
vation about the nature of these local minima.

Lemma 2.1. If we orient the curvePn and letT−(x), T +(x)
denote the inward and outward tangent vectors ofPn at x

(they are different if and only ifx is a vertex with nonzero
exterior angle). Every pairxy which locally minimizesD :
Pn × Pn → R has

T−(x) · (y − x) ≥ 0 T +(x) · (y − x) ≤ 0 (3)

T−(y) · (x − y) ≥ 0 T +(y) · (x − y) ≤ 0. (4)

We note that ifx is in the interior of an edge, then the above
relations forceT±(x) · (x − y) = 0.

Proof. There are three cases: either bothx andy are on the
interior of an edge, one is an edge point and one a vertex, or
both are vertices, as shown in Figure 1. Atx, the distance from
y must not decrease to first order as one moves away from
x in either direction along the curve: a computation verifies
that this is equivalent to the first line of the statement of the
Lemma. A similar argument aty completes the proof.

We now make a definition:

Definition 2. The ith ramp, Ri of a polygonal curvePn is
the union of the planes through edgeei = vivi+1 with normal
vectorvi+1−vi, together with the wedge of vectorsw defined
by the inequalities

(w − vi) · T
−(vi) ≥ 0 (w − vi) · T

+(vi) ≤ 0. (5)
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FIG. 1: We see the three cases in the proof of Lemma 2.1, from left to
right anedge-edgepair, avertex-edgepair, and avertex-vertexpair.
In the center and right figures we seeT−(x) andT+(x), and in the
righthand figure we also seeT−(y). We have not drawnT+(y), but
it would be colinear withvjvj+1 as withT+(x).
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FIG. 2: The shaded area represents the region of space in which the
second pointy of a locally minimal pairxy can lie whenx is on the
edgeei or is the vertexvi. This region consists of the infinite slab
of parallel planes normal toei which pass throughei, together with
the wedge extending from vertexvi in the outward direction from the
vertex.

See Figure 2.

This leads naturally to the Lemma:

Lemma 2.2. If xy is a pair of points onPn which locally
minimizesD, andx is on the half-open edgeei−{vi+1}, then
y is in the rampRi.

Proof. If x is in the interior of the edge, Lemma 2.1 implies
thatxy must be perpendicular toei, and hence thaty is in the
union of normal planes throughei. If x is atvi, the inequalities
above are those of the statement of Lemma 2.1.

It may seem like we have only rephrased Lemma 2.1. In
fact, we have gained an important geometric insight about the
problem– for any edgeei, the rampRi will probably be very
close to a thin slab which only intersects the remainder ofPn

in a few places (see Figure 3 on page 3). If we can isolate
these intersections quickly, we can complete the task of find-
ing POCA(Pn) by a more detailed comparison of these can-
didates toei.

3. THE OCTREE DATA STRUCTURE

With the discussion in Section 2, we have reduced the prob-
lem of identifying edgesej which may form locally minimal
pairs with points on edgeei to the problem of finding which
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FIG. 3: A typical ramp in a a trefoil of about 90 edges consistsof
a very thin slab which only intersects the remainder of the knot in
a few places. If we could isolate ramp-knot intersections quickly, it
would reduce the number of edge-edge checks required to find the
shortestPOCA.

edges ofPn intersectei’s ramp. To do so efficiently, we will
need a new data structure forPn: the octree [10].

The octree representation of a collection of points in space
is a tree where each node represents the bounding box of a
subset of that collection. The eight daughter nodes of a parent
represent the bounding boxes of subsets of the points in the
parent box created by dividing that point set in two in each of
the coordinate directions. The most detailed octree represen-
tation of a point set has leaf nodes which each contain a single
point but it is common to stop subdividing when the point sets
are smaller than some fixed number. Figure 4 illustrates three
levels of this process for a set of points in the plane, while
Figure 5 shows the resulting tree.

From the description above, one can observe that it is easy
to build an octree using the recursive procedure of Algo-
rithm 2.

Data : A node of the tree, a corresponding boxB, and a list of
points.

Result : An octree representation of this point list.
if the list of edges is shorter than some fixedN then

assign these points to this node;
make this node a leaf of the tree;
return;

else
partitionB into 8 child boxes;
for each child boxdo

create a sublist of points intersecting that box;
recurse if this sublist is nonempty;

end
end

Algorithm 2 : One way to Build an Octree

For ann-point dataset, if one chooses each box partition
so that no child box contains more than half the total num-
ber of points in the parent box, the number of levels in this
tree is less thanlog2 n, and one expects this algorithm to run
in O(n log2 n) time. However, this algorithm involves a non-
trivial amount of overhead in keeping track of lists of points,
and making procedure calls. Since we are very concerned

with the final performance of our implementation, we now
present a more insightful octree construction algorithm which
has the same asymptotic time bound ofO(n log2 n), but is
much faster than Algorithm 2 in practice.

To describe the new algorithm, we start with a numbering
scheme. As we mentioned before, it is conventional to denote
the upper right quadrant of the plane by the number1, and
proceed counterclockwise to the fourth quadrant on the lower
right. A more natural numbering scheme assigns each quad-
rant a2-digit binary number,dxdy, wheredx = 0 has lower
values ofx (the left hand side) anddx = 1 has higher values
of x (the right hand side), whiledy = 0 denotes lower values
of y (the bottom half), whiledy = 1 denotes higher values of
y (the top half). For octants in 3-space, we could assign three
digit binary numbersdxdydz similarly.

Now consider the process of quadtree construction again.
At the first subdivision, we divide the point set in two parts by
x-coordinate and byy-coordinate. This gives us four groups
of points, which we can number as above by the 2-digit binary
numbersdxdy. These groups are the members of the 4 boxes
in the next level of the tree, as we saw above.

But there is something else to notice here: If the collection
of points is sorted byx and byy, the digitsdx anddy for any
particular point are the most significant binary digits of that
point’s position in the sorted array. Further, if we continue
to subdivide the points into fourths byx andy, the next pair
of binary digits associated to each point,dx1dy1 will be the
next pair of binary digits in that point’s position in thex andy

arrays as well. Again, for octrees the situation is similar,but
we sort byz as well, and create a sequence of 3-digit binary
(or 1-digit octal) numbers.

Continuing this process, we see that each point in the col-
lection has a uniqueoctal taggenerated by interleaving the
digits of its position in the sortedx, y, andz arrays. This
tag specifies its position in the octree. Further, if we made a
least-first traversal of the octree (descending to octants in the
order of their octal labels), the order in which we would en-
counter the points would be by increasing octal tags. These
observations give rise to a new octree-building algorithm:

Data : A list of points inR
3.

Result : An octree representation of point list.
Sort the points byx, y, andz coordinates;
Shuffle binary digits of array positions to create octal tags;
Sort again by octal tags;
Build tree from this traversal-ordered list;

Algorithm 3 : A faster Octree-building algorithm

The problem of building a tree from a traversal-ordered list
of its contents is a standard one in computer science. Our par-
ticular solution is discussed in some detail in Section 5 below.
We note that building the octree from the list also has time
complexityO(n log n), since every node in the octree must
be visited, but that this algorithm is still much faster thanthe
previous method of octree construction (Algorithm 2). We are
among many rediscoverers of this method of octree construc-
tion, which traces its roots to the “linear quadtree” construc-
tion of Gargantini [6].
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FIG. 4: From left to right, these pictures show three stages in the construction of a quadtree representation (the planarversion of an octree
representation) of a set of points. On the left, the boundingbox of the entire point set is computed. This is the root of thetree. In the center, we
see the points divided in two byx andy coordinates, and then grouped by quadrant into four subcollections, with bounding boxes as shown.
On the right, we again divide the subcollections and group into subquadrants. The resulting 3-level tree is shown in Figure 5.
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FIG. 5: This picture shows the quadtree constructed in Figure 4
in a more familiar form. The boxes are labelled according to the
usual numbering convention for quadrants of the plane, where the
first quadrant is on the top right and numbering proceedings counter-
clockwise. The final numbers show the number of points in eachleaf
box, and should be compared to the boxes shown in Figure 4 in the
right-hand image.

4. THE CORE OF THE ALGORITHM

We can now describe our algorithm. Given anyei, we must
identify all edgesej which might be part of a shortestPOCA
with ei. Such edges must obey two conditions: they must
intersectei’s ramp, and they must be closer toei than the
shortestPOCA found so far. Since both conditions can be
checked for sub-boxes of the octree, we can use them to elim-
inate groups ofej from consideration before performing edge-
edge checks.

In pseudo-code, this is a collection ofn calls to the (recur-
sive) Algorithm 4 (one for eachei). We refer to the entire
algorithm (minRad computation, octree construction by Al-
gorithm 3, and calls to Algorithm 4 for each edge) asOctrope.

Each call to this algorithm might require it to traverse the
entire depth of the octree before reaching leaf nodes and per-
forming the edge-edge checks. Yet this depth is bounded
above bylog2 n, so the expected running time for the algo-
rithm is O(log n). In pathological cases, many or all of the
boxes may intersect the ramp. If all the boxes intersect all the
ramps, this algorithm may be asymptotically slower than the
naive one: we are forced to visitO(n log n) tree nodes against
each ofn edges, for a total time complexity ofO(n2 log n).

Data : An octree node, the current minimum strut lengthl and
a ramp fromei.

Result : All struts betweenei and edges in this octree.
if this box is withinl of ei then

if this box intersects the ramp fromei then
if this box is a leafthen

check the (at mostN ) edges againstei;
if struts are foundthen

updatel;
return struts;

end
else

for each nonempty child nodedo
recurse on the child node and the ramp;

end
end

end
end

Algorithm 4 : Recursively identifying candidateej ’s.

We have seen Algorithm 1 outperform Algorithm 4 only for
a particularly bad class of examples: knots formed by con-
necting vertices chosen at random inside a fixed volume. (See
Section 6 for details.)

5. IMPLEMENTATION ISSUES

While being able to replace anO(n2) algorithm with one
which isO(n log n) will certainly save timefor large enough
values ofn, there is no guarantee that this will help with prob-
lems of practical size. Indeed, Algorithm 4 threatens to con-
sume a fair amount of overhead, while Algorithm 1 involves
only edge-edge checks, which could be coded very efficiently.
So in this section we turn our attention from the “n log n” to
its multiplier — from mathematics to program design. In this
discussion, we’ll refer to function names and prototypes from
our publically available library version ofOctrope, which is
calledliboctrope.
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FIG. 6: Our example is a polygonal Hopf-link approximation com-
posed of two regular pentagons. The lighter lines are the9 struts
for which theOctrope algorithm is searching. They extend from the
midpoints of one side of each interlocked polygon to all the mid-
points of the edges of the other.

Component
1 2

v00 = (14.5, 20, 0) v10 = (0, 0, 14.5)
v01 = (23.5,−7.6, 0) v11 = (0, 27.6, 23.5)
v02 = (0,−24.7, 0) v12 = (0, 44.7, 0)
v03 = (−23.5,−7.6, 0) v13 = (0, 27.6,−23.5)
v04 = (−14.5, 20, 0) v14 = (0, 0,−14.5)

TABLE I: The approximate vertices of the pentagonal Hopf link
shown in Figure 6 are given here. We have rounded the numbers
to the nearest tenth to simplify the table. This does not affect the
octree-building procedure under discussion, but would change the
strut picture shown in the figure above.

The depth of the octree. Since searching the octree involves
some overhead, it is to be expected that we will not get the
best performance from the deepest octree. Rather, we expect
it to be more efficient to group some number of edges in each
box and do simple checks between the current edge and the
edges in an implicated leaf box.

We implement this by bounding the maximum number of
levels in the tree by someℓ. This can be set by the user, using
the octree set levels() call or it will default to ℓ =
⌈

3
4 log2 n

⌉

(where⌈r⌉ is the least integer greater than or equal
to r), a formula at which we arrived empirically. It also uses
m, the maximum number of edges in any leaf box, which is
given bym =

⌈

n
2ℓ−1

⌉

.

A concrete example. We will now trace through our im-
plementation of the fast octree construction procedure of Al-
gorithm 3 for a particular example: a Hopf link where each
edge is given by a regular pentagon (see Figure 6 and Table I).
In this example,ℓ would default to3 andm would then also
equal3.

Sorting edges. The algorithm begins by gathering all of the
edges into a singlen-element array which we callby oct.
To avoid double-checking edge pairs later on, we need each
edge to “belong” to only one of the leaf boxes in our tree. So
we identify each edge by its midpoint and store that, as well

as the edge’s length and its starting vertex inby oct.
As we createby oct, we also buildby x,by y andby z,

threen-element arrays of pointers to the elements ofby oct.
We then sort these byx, y, andz order. The result is shown in
Table II.

We divide by x, by z, and by z into sections ofm
points each (shown in Table II by spacing) and walk through
them, labeling the edges with the binary numbers of the sec-
tions in which they lie in the following unusual fashion: if
x = x1x2 · · ·xℓ−1, y = y1 · · · yℓ−1 andz = z1 · · · zℓ−1 are
the respective box numbers and their binary representations,
we interleave those bits to produce a single octal number,
z1y1x1z2y2 · · · yℓ−1xℓ−1. This is theoctal tagof Section 3
above1. We then sortby oct by that octal tag, as shown in
Table III on page 6.

As we discussed in Section 3, the sortedby oct array is
in the same order as that of a traversal of the full octree.

Building the tree. The actual building of the octree can be
approached in various directions. We could simply use the
by oct array with no futher indexing, traversing it with bi-
nary searches (an approach which saves space at the expense
of time). On the other hand, if we are to index it, we can build
our index in a top-down fashion, establishing the root node
and building out to the leaf nodes. We can build in a bottom-
up fashion, partitioning off parts ofby oct as leaf nodes and
collecting them together in groups until we reach a single top
node. Or we can (and do) use a “sideways” or “limb-by-limb”
approach. We take an array ofℓ box pointers and on them
build the “left-hand limb” of the tree, all the way from the
smallest numbered leaf box down to the root box. Each of the
boxes knows its first edge inby oct and how many edges it
has (which are grouped together thanks to the octal sort).

Then we walk once throughby oct, watching the octal
tags. As long as the tag is the same as the one before it, we
simply increment the count of edges in that box. When it
changes, we do a binaryXOR with the previous tag to see how
much they differ (that is, which of the octal digits changed).
That tells how many of the boxes in this “limb” are complete.
After some cleanup (which may include pruning the “limb”)
we leave those boxes and the create the new ones necessary
to hold this edge. Figure 7 on page 7 shows our example tree
after this process is complete.

Searching the tree. We have now created the tree and can
move into using it. We can now check each edge and its ramp
against the tree, looking for leaf boxes on which to run edge-
edge checks. Since struts are symmetric, we do not ever want
to compare the same pair of edges twice. To avoid this we do
the edge-edge check only if the edge in question preceeds our

1 To construct octal tags, we take a single pass simultaneously through
by x, by y, andby z, starting with the second box, which has binary
tag00 · · · 01. As we walk the arrays, we spread the bits of the box number
apart (e.g.1101 → 1001000001) using a lookup table similar to that of
Shaffer [16], shift them left 1 bit fory or 2 bits forz, andOR them with the
tag constructed so far. The tags are thus built up over time and guaranteed
to be correct only when we reach the end of the pass.
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by x by y by z
e03 : (−19, 6.2, 0) e02 : (−11.75,−16.15, 0) e13 : (0, 13.8,−19)
e02 : (−11.75,−16.15, 0) e01 : (11.75,−16.15, 0) e12 : (0, 36.15,−11.75)
e04 : (0, 20, 0) e14 : (0, 0, 0) e00 : (19, 6.2, 0)

e10 : (0, 13.8, 19) e03 : (−19, 6.2, 0) e01 : (11.75,−16.15, 0)
e11 : (0, 36.15, 11.75) e00 : (19, 6.2, 0) e02 : (−11.75,−16.15, 0)
e12 : (0, 36.15,−11.75) e10 : (0, 13.8, 19) e03 : (−19, 6.2, 0)

e13 : (0, 13.8,−19) e13 : (0, 13.8,−19) e04 : (0, 20, 0)
e14 : (0, 0, 0) e04 : (0, 20, 0) e14 : (0, 0, 0)
e01 : (11.75,−16.15, 0) e11 : (0, 36.15, 11.75) e11 : (0, 36.15, 11.75)

e00 : (19, 6.2, 0) e12 : (0, 36.15,−11.75) e10 : (0, 13.8, 19)

TABLE II: In this table, we see the10 edges of the pentagons in Table I sorted byx, y, andz. The edges are sorted by their midpoints,
and numbered by the index of their first vertices. The spacingreminds us that sincem = 3, we are grouping the midpoints by threes when
constructing boxes.

edgex-box y-box z-box bits octal decimal
e02 0 0 1 000100 048 4
e03 0 1 1 000110 068 6
e00 3 1 0 001011 138 11
e01 2 0 1 001100 148 12
e12 1 3 0 010011 238 19
e13 2 2 0 011000 308 24
e10 1 1 3 100111 478 39
e14 2 0 2 101000 508 40
e04 0 2 2 110000 608 48
e11 1 2 2 110001 618 49

TABLE III: This table contains the edges with their box numbers in
thex, y, andz directions, the binary numbers generated by interleav-
ing the bits of these box numbers, and the corresponding octal tags
(in octal and decimal). The data is sorted by octal tag, and soappears
in the same order in which it appears in theby oct array. In prin-
ciple, as many asm edges can share an octal tag, which means that
they occupy the same leaf node of the resulting octree, but this does
not happen in our example.

chosen edge inby octḂy so doing, we can eliminate entire
boxes because their lowest edges is not in range. The savings
from this technique has been significant.

6. PERFORMANCE

We tested our algorithm using a1.25 Ghz G4 Macintosh
computer on high-resolution discretizations of simple knots
and on random walks. To make the tests, we compared the
run times betweenliboctrope with the tree depth set to1
(forcing n(n−3)

2 edge-edge checks) and with the default tree
depth ofℓ =

⌈

3
4 log2 n

⌉

. We compiled our code withgcc
3.3 and used the-O3 option.

For both of these classes of knots,liboctropewas much
faster than our reference implementation of Algorithm 1. Fig-
ure 8 shows the relative performance of the two algorithms
on trefoil knots. It is also worthwhile to compare the perfor-
mance of our code for a 2499-edge random walk at different

Algorithm
Standard Octrope Max depth

Octree levels 1 9 13
Edge-edge checks3, 121, 251 32, 033 8189
Box/ramp checks0 51, 131 93, 187
Time 1.9 sec 0.16 sec 0.22 sec

TABLE IV: This table compares the performance of the
liboctrope library on a2500-edge random walk at three levels of
tree depth:1 (the standardO(n2) algorithm),⌈ 3

4
log2 n⌉ (Octrope),

and13 (the maximum resolution). We see a trade-off between edge-
edge checks and box/ramp checks as the octree resolution increases.
Increasing the number of levels in the octree from9 to 13 cuts the
number of final edge-edge checks performed by a factor of4, but
doubles the number of box/ramp checks. Since the box/ramp checks
are more computationally expensive, this is not a favorableratio, and
the overall execution time increases.
The data shows that we have been very effective at reducing the num-
ber of edge-edge checks. On average,Octrope compares each edge
to less than13 carefully chosen candidates when searching for struts.

levels of octree resolution, as in Table IV.
It is worth noting thatOctrope does not always outperform

the standard algorithm. For instance, for random knots con-
structed by choosing vertices inside a fixed volume, neither
ramp-checking nor distance checking eliminates a significant
number of pairs from consideration. The edges are simply
too long, and pass too close to one another to decide in ad-
vance which pairs are likely to control thickness. But even in
this case,liboctropewas only a few times slower than the
standard algorithm.

Currently, minimizing the ropelength of850-edge knots by
simulated annealing is a relatively taxing task, requiringa few
weeks of computer time on a standard desktop machine. Our
timings above indicate that a simulated annealer built around
liboctrope could do the job5 times faster, or, alterna-
tively, minimize the ropelength of a2000-edge knot in the
same time.
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FIG. 7: These two trees show the octree as initially constructed (top) and after our pruning procedure (bottom). This hasgrouped some edges
together in single nodes (such ase02 ande03) and deleted some nodes with only one child (such asB23). It is desirable to eliminate extra
nodes of this kind, since even though we keep the octal tree ascompact in memory as possible, each jump from node to node runs the risk of
straying outside the memory cache of the processor and incurring a delay as more information is loaded from main memory.
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FIG. 8: The two plots show the time in seconds required to find ropelength for trefoils (solid lines) and random walks (dashed lines) as a
function of edgelength. The timings were computed on a1.25 Ghz MacintoshG4 computer, and represent averages over10 runs (for times
above one second), or100 runs (for times below one second). Some variation is still evident in the right-hand graph, which is probably due to
inaccuracy in the system’stime() function.
The top lines in each graph show the time required by the standardO(n2) algorithm, while the bottom lines show that of theliboctrope
library. Notice that the right-hand graph shows thatliboctrope is faster for trefoils of more than about100 edges, and essentially all of the
random walks tested.
On the right-hand graph, the standard algorithm’s performance fits toO(n2), as expected.Octrope’s performance, on the other hand, appears
to fit O(n4/3). Our clustering algorithm appears to be significantly more effective for random walks than trefoils. We conjecture thatthis is
due to the fact that the walks occupy more volume than the trefoils, but we do not have a theoretical model for this effect.
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7. CONCLUSIONS AND FUTURE DIRECTIONS

We have given an outline of an improved algorithm for
computing the ropelength of polygonal space curves in time
O(n log n) and contrasted it to the previous standard algo-
rithm which required timeO(n2). We have implemented
the algorithm efficiently in ANSI C, and given timings which
show that our algorithm is also much faster in practice than
previous methods used in the field.

The increase in speed from using our method should enable
researchers to consider significantly more complicated knots,
and to get much higher-resolution data for simpler knots. Both
of these are valuable goals. It has always been a goal of the
geometric knot theory community to apply our results to large
biomolecules such as DNA and proteins. Since these curves
may involve thousands of vertices, they have been out of the
reach of tools based on Algorithm 1.

However, our methods do not entirely settle the problem of
fast ropelength computation. As mentioned in the introduc-
tion, Cantarella, Fu, Kusner, Sullivan, and Wrinkle [4] have
discovered tiny straight segments in a ropelength-critical sim-
ple clasp. These segments are a few one-thousands of one unit
in length out of a total clasp length of about6 units (a similar
clasp has been constructed by Starostin [18], though he does
not prove it is critical). To resolve these very small scale phe-
nomena numerically will require ropelength-minimized con-
figurations with tens of thousands of edges.

At about3 seconds per ropelength computation on a stan-
dard desktop machine, it would simply be untenable to mini-
mize the ropelength of a20, 000-edge knot using our library
and simulated annealing on a desktop machine. However, Oc-
trope parallelizes well, so one could bring supercomputing
cluster machines to bear on the problem, reducing the time
to evaluate a configuration to tenths or hundredths of a sec-
ond. This might allow for a long enough cooling schedule to
resolve some small-scale phenomena, but there is no guaran-
tee.

We are hence considering two further approaches to the
problem: theMultiresolution Ropelength Algorithm and
the use of Edelsbrunner’s “segment trees”([20]). The first al-
gorithm is based on the idea that very high resolution knots
can be well-approximated by subsampling the vertex set. If
one keeps track of the distance between the subsampled knot
and the original, one can again eliminate groups of edges from
edge-edge checking. The potential advantages of this scheme
are twofold: first, the construction of the corresponding tree is

linear in time and second, the subsampled knots can be han-
dled by Octrope itself. The disadvantage of the multireso-
lution algorithm is that it will not help with random walks
or other very complicated knots, such as large protein back-
bones, as their subsamples will not be close to the original
curve.

We would also like to observe that while the discussion
above is phrased in terms of polygons, the general octree/ramp
method is equally applicable to other discretization schemes
for curves, such as biarcs. In that case, the relative speed ad-
vantage of this algorithm should be greater, since the “edge-
edge check” for a pair of arcs or spline segments is much
slower than the edge-edge check for polygonal edges de-
scribed above.

In conclusion, we hope that our algorithm and implementa-
tion will become a standard software component in numerical
investigations of the ropelength problem. If others can im-
prove our code, we hope that they will do so, and invite them
to contact us. We also hope that our public release of the li-
brary (the first that we know of in geometric knot theory since
Brakke’s Evolver [2]) will inspire others in the field to con-
tribute from their personal and laboratory collections of code
to the public domain.

Those interested in obtaining the code should browse
to http://ada.math.uga.edu/research/software/
octrope/ for further information.
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