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Abstract

The purpose of the present paper is an investigation of classical Morse Theory, to examine
topological aspects of complex Grassmannians. We will develop this theory from scratch, intro-
ducing the Hessian and Morse functions, proving the fundamental results of the Morse Lemma
and the Morse principles, before giving the main result of Morse theory, ultimately telling us
how to obtain a CW-complex structure on any smooth manifold. Also the Morse inequalities
will be derived, giving us a connection between the homology of the underlying manifold, in form
of the Betti numbers, and the critical points. We then give a couple of examples, before moving
on to generalize the classical theory to Morse-Bott theory, allowing us to calculate the Poincaré
polynomial of complex Grassmannians, by construction of a perfect Morse-Bott function. This
turns out to be an efficient way to quantitatively describe smooth manifolds in general. Indeed,
this polynomial contains enough topological information to completely determine the homology
– and with some additional efforts even the cohomology – of the complex Grassmannians.

Resumé

Form̊alet med nærværende skrivelse er en undersøgelse af klassisk Morse teori, med henblik
p̊a at opn̊a indsigt i topologiske aspekter ved komplekse Grassmannians. Vi udvikler denne teori
fra bunden, idet vi introducerer Hessianen og Morse funktioner, inden vi viser de fundamentale
resultater i Morse lemmaet og Morse principperne, hvilket leder til hovedresultatet i Morse teori,
som i sidste ende giver os en CW-kompleks dekomposition af enhver glat mangfoldighed. Der-
udover udledes Morse ulighederne, hvilket giver os en sammenhæng mellem homologien af den
bagvedliggende mangfoldighed, i form af Betti-tallene, og de kritiske punkter. Herefter gives et
par eksempler, før vi generaliserer den klassiske Morse teori til Morse-Bott teori, hvilket tillader
os at beregne Poincaré-polynomiet af komplekse Grassmannians, ved konstruktion af en perfekt
Morse-Bott funktion. Dette viser sig at være en effektiv m̊ade hvorp̊a glatte mangfoldigheder
kan beskrives kvantitativt, idet disse polynomier indeholder nok topologisk information til fuld-
stændigt at bestemme homologien – og med nogle yderligere bestræbelser s̊agar kohomologien
– af komplekse Grassmannians.
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Preface

The present paper is the result of a small Masters Project, written at the Department of Mathe-
matical Sciences, University of Copenhagen, through late spring 2012. I would like to thank my
advisor, Professor Nathalie Wahl, first and foremost for her kind help and willingness to engage
in the project on a rather short notice, and secondly for giving me an illuminating introduction
to differential topology in general, through the course DiffTop taken just before this project was
initiated. Furthermore, I thank Dr. Richard Hepworth for vividly introducing me to topology in
the first place, and for his continuous support ever since.

It is an elementary fact from topology that if M is a compact manifold, then any continuous
function f on M has maximum and minimum points, and that these are critical points. “Morse
Theory” is the general term for a far-reaching and seemingly inexhaustible idea, greatly extending
this result and thus connecting analysis, topology and geometry. More precisely, it is possible to
determine topological properties of a finite or infinite dimensional manifold from the critical points
of just one suitable function on the manifold. Indeed, one can for example construct CW-complex
structures of any smooth manifold this way, and in some cases calculate the homology - or even
cohomology - of this underlying manifold.

The subject started out in the 30’s with Marston Morse (1892-1977) and his calculus of variations
in the large. Since then, the subject has seen many surprising extensions, to reemerge as an important
source for grasping ever more diverse areas of mathematics. In the 40’s, Réné Thom (1923-2002),
who would later be one of the founders of catastrophe theory, made contact with physics. In the
50’s, Raoul Bott (1923-2005) greatly generalized Morse theory to study homotopy theory of Lie
groups, eventually leading to the celebrated Bott periodicity theorem. We shall also take a look
at this extension, to be able to analyze Grassmannians. Stephen Smale (1930-), a Ph.D. student
under Raoul Bott and later Fields medalist, made the next great leap for Mose theory in the 60’s
by connecting it with dynamical systems. In the 70’s Edward Witten (1951-) rediscovered Morse
theory through a supersymmetric approach, awarding him the Fields medal as well. Finally, in
the 1980, Andreas Floer (1951-1991) invented an infinite dimensional analog of finite dimensional
Morse homology, applicable to symplectic geometry and low-dimensional topology, which has also
set the stage for present day research in topological field theory. This resilience of Morse theory is
reflected in the very title of Bott’s survey article “Morse Theory Indomitable” [Bot88] in which a
more detailed exposition of the development of Morse theory can be found. See also Guest’s paper
“Morse Theory in the 1990’s” for a more modern and very readable account.

Morse theory is thus a huge subject connecting many interesting fields of mathematics, and, con-
sequentially, has an enormous amount of applications. Among these are the Gauss-Bonnet theorem,
the Poincaré-Hopf index theorem, Poincaré duality, determination of geodesics on a manifold, Lef-
schetz singularity of hypersurfaces, Yang-Mills theory on vector bundles, Milnor’s exotic spheres and
Hamiltonian dynamics, to name but a few, see [Pet01]. Recently, there have also been numerous
real world applications within robotics, crystallographics and image analysis.

Needless to say, this paper cannot cover even a tiny fraction of this. Instead, we aim to give a
motivating introduction to the general idea of Morse theory for finite dimensional manifolds, by
looking at the exceptional, and now classical, exposition of the subject by John Milnor [Mil68] with
a few of the later developments by Bott and Smale, allowing us to look at an interesting example,
the complex Grassmanians, and thereby displaying some of the strengths of Morse theory. The pre-
requisites for this paper is thus kept to a minimum, although the reader is assumed to be familiar
with some differential topology, differential geometry and functional analysis.

Mads Christian Hansen
Copenhagen, Denmark

June 20, 2012
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1 Classical Morse Theory

In this section we will introduce the concepts of what has become known as the somewhat classical
fields of Morse Theory. We will mainly follow the outline by John Milnor [Mil68], which has become
a classic on its own [Gue02]. More specifically, we will introduce the notions of critical points, index,
Morse functions, prove the Lemma of Morse and discuss the existence of Morse functions. After
covering some background material on dynamics, we will move on to prove the Morse principles,
leading to the main theorem which will give us a surprising connection between the shape of a
manifold and the functions defined on it.

1.1 Morse functions

Our analysis will be carried out on certain particularly nice functions, called Morse functions. We
will later see that this restriction is not too harsh, indeed the space of Morse functions is dense in
the space of functions. Yet being a Morse function is paradoxically also a strong condition since
these will have a very special local canonical form. One could perhaps take this as an indication of
a good definition [Gue02].

We first need to introduce some terminology. In all what follows, we will let M be an m-dimensional
smooth manifold. The tangent space at a point p ∈ M will be denoted by TpM . If f : M → M ′ is
a smooth map with f(p) = q, then the induced map, the differential of f at p, will be denoted by
dfp : TpM → TqM

′. We can now define the very central concept of a point being critical.

Definition 1.1.1. Let f : M →M ′ be a smooth map between smooth manifolds. A point p ∈M is
critical if the differential dfp is not surjective. A point q ∈M ′ is a critical value if the fibre f−1(q)
contains a critical point of f . We denote by Crf the set of critical points for f . C

Note 1. In particular, for a smooth map f : M → R, the point p ∈ M is critical if dfp : TpM →
Tf(p)R ' R is zero. Introducing local coordinates (x1, . . . , xm) in a neighborhood U of p, this is
equivalent to

∂f

∂x1
(p) = · · · = ∂f

∂xm
(p) = 0, (1.1)

where we use the convention of treating coordinate maps as identifications, thus simplifying the
expression ∂(f◦ϕ−1)

∂xi
(ϕ(p)), where ϕ : U → Rm is a smooth chart, see [Lee02, Chapter 3] for more

details. This convention will be followed throughout the rest of this project. ♦

Example 1.1.1. Following [Nic07, Example 1.4], let M be an m-manifold embedded in a Euclidean
space E and f : E → R a smooth function. Note that by [BJ82, Whitneys embedding theorem] we
know that such an embedding always exists. A point p ∈ M is critical for the restricted map f |M
if the following holds, where 〈·, ·〉 denotes the canonical inner product in E:

〈∇f(p), v〉 = 0, ∀v ∈ TpM. (1.2)

Referring back to a basic course on Calculus of several variables, we know that the gradient at
p is orthogonal to the tangent space of the level set containg f(p). Therefore, by [Note 1] and
(1.2), p ∈ M is critical for f |M if p is a critical point of f , or ∇f(p) 6= 0 and TpM is contained
in Tpf

−1(f(p)). Now, if f is a non-zero linear function, then all its level sets are hyperplanes
perpendicular to a common vector v ∈ E, and p ∈M is a critical point of f |M exactly if v ⊥ TpM .

1
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Figure 1.1: The height function on T 2 embedded in R3.

In particular, the height function f : R3 → R given by f(x, y, z) = z is such a non-zero linear
function, with its level sets perpendicular to v = (0, 0, 1), that is horizontal planes. Applying this to
the classical example of the torus T 2 embedded vertically in R3, we see that there are exactly four
critical points. Indeed, in the above figure, p1, . . . , p4 are critical points, while f(p1), . . . , f(p4) are
the corresponding critical values. ♦

1.1.1 The Hessian

We will need to distinguish between two kinds of critical points, what we will later call degenerate
and non-degenerate critical points, since the first type is too unstable when considering topological
questions. Indeed, if we perturb a function with a non-degenerate critical point slightly, we will ob-
tain another non-degenerate critical point close to the first one, while perturbing a function with a
degenerate critical point could result in either loosing or obtaining a critical point, see [Mat02]. This
needs to be ruled out. To be able to make this distinguishing, however, we will need to introduce
the Hessian, following [Nic07].

Recall that, by definition, a vector field on a manifold M is an assignment of a tangent vector
Yp ∈ TpM to each p ∈M . It is called smooth, if to any smooth coordinate chart (U, (xi)) around p,

Yp =
m∑
i=1

ai(p)
∂

∂xi

∣∣∣
p

(1.3)

for all p ∈ U , where the m component functions Y i ∈ C∞(U) are smooth, see for example [Sch07].

Definition 1.1.2 (Hessian). Let p0 be a critical point of the smooth function f : M → R. The
Hessian of f at p0 is the map

Hf,p0 : Tp0M × Tp0M → R given by Hf,p0(v, w) = (XY f)(p0) (1.4)

where X,Y are vector fields on M such that X(p0) = v, Y (p0) = w. C

This is well defined by the following fact, which we recall from differential geometry: Let X and
Y be smooth vector fields on a smooth manifold M . Given a smooth function f : M → R, we can
apply Y to f and obtain another smooth function Y f , cf. [Lee02, Lemma 4.6]. In turn we can apply
X and obtain yet another smooth function XY f = X(Y f). Thus Hf,p0 is well defined. While we
are at it, let’s denote the directional derivative of f at p in direction v ∈ Rm

Dp,v(f) =
d

dt

∣∣∣
t=0

f(p+ tv) ∈ R (1.5)

see for example [Sch07]. With this in mind, we can now prove the following lemma, implying that
the Hessian is invariant under coordinate changes.

Lemma 1.1.1. The Hessian Hf,p0 is a bilinear and symmetric functional independent of the choice
of vector fields X,Y extending v, w.

2



Proof. Suppose p0 is a critical point where X(p0) = X ′(p0) and Y (p0) = Y ′(p0), for some vector
fields X ′, Y ′ extending v, w respectively as well. Since the Lie bracket of two smooth vector fields is
again a smooth vector field, cf. [Sch07, Theorem 6.5] we obtain:

(XY − Y X)f(p0) = [X,Y ]f(p0) = Dp0,[X,Y ](p0)f = 0 (1.6)

where the last equation follows because p0 is a critical point. Therefore (XY f)(p0) = (Y Xf)(p0)
and hence Hf,p0 is symmetric. Since (X −X ′)(p0) = 0 we see that

(X −X ′)g(p0) = Dp0,(X−X′)(p0)g = 0 ∀g ∈ C∞(M) (1.7)

In particular, since Y f ∈ C∞(M) cf. [Sch07, Lemma 6.2.2], we infer that (X − X ′)Y f(p0) =
(XY f)(p0)− (X ′Y f)(p0), which in turn gives us

(XY f)(p0) = (X ′Y f)(p0) = (Y X ′f)(p0) = (Y ′X ′f)(p0) = (X ′Y ′f)(p0). (1.8)

We conclude that Hf,p0 is independent of the chosen vector field as required. Finally, to see that
it is bilinear, let Ŷ, Ỹ be vector fields such that Ŷ (p0) = Y0 and Ỹ (p0) = Y1. Then for a0, a1 ∈ R,
a0Ŷ + a1Ỹ is also a smooth vector field on M . Now we get

Hf,p0(X0, a0Y0 + a1Y1) = Hf,p0(X0, a0Y0 + a1Y1) = X(a0Ŷ + a1Ỹ )f(p0) (1.9)

= a0XŶ f(p0) + a1XỸ f(p0) = a0Hf,p0(X0, Y0) + a1Hf,p0(X0, Y1) (1.10)

and similarly for the first coordinate. We conclude that Hf,p0 is a bilinear functional as desired.

Definition 1.1.3. A critical point p0 of a smooth function f : M → R is called non-degenerate if
its Hessian is non-degenerate, that is

Hf,p0(v, w) = 0 ∀w ∈ Tp0M ⇔ v = 0 (1.11)

A smooth function is called a Morse function if all its critical points are non-degenerate. C

Note 2. In the basis ∂
∂xi |p0 , . . . ,

∂
∂xm |p0 for the tangent space Tp0M , the Hessian is represented by

the matrix

Hij(p0) =
[ ∂2f

∂xi∂xj
(p0)

]
1≤i≤m,1≤j≤m

(1.12)

Furthermore, p0 is non-degenerate if and only if detHij(p0) 6= 0. Indeed, we can write the smooth
vector fields locally as follows:

X =
m∑
i=1

ai
∂

∂xi
and Y =

m∑
j=1

bj
∂

∂xj
(1.13)

where ai, bj ∈ C∞(M) are the components of X and Y respectively, cf.[Lee02, p. 83-84]. We can
assume that the bj ’s are constant by [Lemma 1.1.1]. Then we have

Hf,p0(v, w) = (XY f)(p0) = X(Y f)(p0) =
m∑
i=1

ai
∂

∂xi

( m∑
j=1

bj
∂f

∂xj

)
(p0) (1.14)

=
m∑
i=1

ai

( m∑
j=1

∂bj
∂xi

∂f

∂xj
+ bj

∂2f

∂xi∂xj

)
(p0) =

m∑
i,j=1

ai(p0)bj(p0)
∂2f

∂xi∂xj
(p0) (1.15)

= [ai(p0)]Hij(p0)[bj(p0)] (1.16)

Suppose Hf,p0(v, w) = 0 for some w 6= 0. Then w = Y (p0) =
∑m
j=1 bj(p0) ∂

∂xj
|p0 thus there exists

bi ∈ C∞(M) such that bj(p0) 6= 0. If det(Hij(p0)) 6= 0, then Hij(p0)[bj(p0)] 6= [0] hence there exists
a function ai ∈ C∞(M) such that ai(p0) = 0. Now if Hf,p0(v, w) = 0 for all w ∈ Tp0M , then
ai(p0) = 0 for all i, that is v = X(p0) =

∑m
i=1 ai(p0) ∂

∂xi |p0 = 0. Thus, if det(Hij(p0)) 6= 0, then p0 is
non-degenerate. On the other hand, suppose det(Hij(p0)) = 0, then there exists some [bj(p0)] such
that Hij(p0)[bj(p0)] = [0] and thus Hf,p0(v, w) = 0 also for v 6= 0. Therefore, by contraposition, if
p0 is non-degenerate, det(Hij(p0)) 6= 0. ♦
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Examples of degenerate and non-degenerate critical points

In [Figure 1.1.1] we see different interesting cases of functions on Rn. In the first, the function
f(x, y) = x2 + y2 has the origin as a non-degenerate critical point. In the second, the function
f(x, y) = x3−3xy2 = Re(x+ iy)3 has the origin as a degenerate critical point. Finally, the last case
shows f(x, y) = x2 which has the entire x-axis as degenerate critical points, cf. [Mil68].

Figure 1.2: Examples of critical points for functions on R2.

1.1.2 The Lemma of Morse

Using the Hessian, we will in this section describe the local structure of Morse functions, following
[Mil68] and [Mat02]. Recall, that with the index of a bilinear functional H on a vector space V , we
understand the maximal dimension of a subspace of V on which H is negative definite. We can now
define the index of a smooth function at a non-degenerate critical point.

Definition 1.1.4. Let p0 be a non-degenerate critical point of a smooth function f : M → R. Its
index, λ(p0), is the index of the Hessian Hf,p0 . C

One could equivalently define the index of p0 as the number of negative eigenvalues of the Hessian
matrix, Hij(p0), see [Bot88]. This index contains surprisingly much information. In fact, the lemma
of Morse below shows that the behavior of f in a neighborhood of a point p, can be completely
described by this index. However, we need the following preliminary lemma:

Lemma 1.1.2. Let U be a convex neighborhood around the origin in Rm, and f : U → R a smooth
function. Then there exists smooth functions g1, . . . , gm : U → R such that

f(x) = f(0) +
m∑
i=1

xigi(x1, . . . , xm) (1.17)

Proof. By the fundamental theorem of calculus we have

f(x)− f(0) =
∫ 1

0

d

dt
f(tx1, . . . , txm) dt =

m∑
i=1

xi

∫ 1

0

∂f

∂xi
(tx1, . . . , txm) dt (1.18)

Thus we can define gi(x1, . . . , xm) =
∫ 1

0
∂f
∂xi

(tx1, . . . , txm) dt.

Lemma 1.1.3 (Morse Lemma). Let p0 be a non-degenerate critical point of f : M → R. Then
there is a local coordinate system (x1, x2, . . . , xm) around p0 with xi(p0) = 0 for all i and such that
the indentity:

f = f(p0)− x2
1 − x2

2 − · · · − x2
λ + x2

λ+1 + · · ·+ x2
m (1.19)

holds in this neighborhood, where λ is the index of f at p0.

Proof. Suppose first, that such an expression (1.19) for f exists. Then λ must be the index. Indeed
for any coordinate system (z1, . . . , zm), if

f(q) = f(p0)− z1(q)2 − z2(q)2 − · · · − zλ(q)2 + zλ+1(q)2 + · · ·+ zm(q)2 (1.20)

4



then we have

∂2f

∂zi, ∂zj
(p0) =

 2 if i = j > λ
−2 if i = j ≤ λ
0 if i 6= j

(1.21)

thus the matrix representing Hf,p0 with respect to the basis ∂
∂z1
|p0 , . . . , ∂

∂zm
|p0 is the diagonal matrix

−2

. . .

−2
2

. . .

2

 (1.22)

We see that there is a subspace, V− of Rm of dimension λ where Hf,p0 is negative definite, and a
subspace V+ of Rm of dimension m − λ where Hf,p0 is positive definite. If there were a subspace
of Rm of dimension greater than λ on which Hf,p0 was negative definite, then this would intersect
with V+, which is impossible.

We now show that a suitable coordinate system (x1, . . . , xm) exists. We can assume that p0 corre-
sponds to the origin (0, . . . , 0), and furthermore that f(p0) = f(0) = 0, replacing f by f − f(p0)
if necessary. By [Lemma 1.1.2] there exists smooth functions g1, . . . , gm in a neighborhood of the
origin such that

f(x1, . . . , xm) =
m∑
j=1

xjgj(x1, . . . , xm). (1.23)

From the proof of [Lemma 1.1.2] it furthermore follows that

gi(0) =
∫ 1

0

∂f

∂xi
(0) dt =

∂f

∂xi
(0) = 0 (1.24)

where the last equality follows since p0 = 0 is assumed to be a critical point. Therefore we can
apply [Lemma 1.1.2] once again to gj hence obtaining

gj(x1, . . . , xm) =
m∑
i=1

xihij(x1, . . . , xm) (1.25)

for some smooth functions hij in a neighborhood of the origin. It follows that

f(x1, . . . , xm) =
m∑

i,j=1

xixjhij(x1, . . . , xm). (1.26)

Letting hij = 1
2 (hij + hji) we get

f(x1, . . . , xm) =
1
2

(
m∑

i,j=1

xixjhij(x1, . . . , xm) +
m∑

i,j=1

xixjhji(x1, . . . , xm)) (1.27)

=
m∑

i,j=1

xixj

(1
2
hij(x1, . . . , xm) + hji(x1, . . . , xm)

)
=

m∑
i,j=1

xixjhij(x1, . . . , xm) (1.28)

and furthermore hij = hji. Note that by the chain rule we have

∂f

∂xi∂xj
(x) = hij(x) + xj

∂hij
∂xj

(x) + xi
∂hij
∂xi

(x) + xixj
∂2hij
∂xi∂xj

(x)

+ hji(x) + xj
∂hji
∂xj

(x) + xi
∂hji
∂xi

(x) + xixj
∂2hji
∂xi∂xj

(x) (1.29)
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and therefore, since p0 is assumed to be a non-degenerate critical point, we obtain

det[hij(0)]ij = det
[1

2
(hij(0) + hji(0))

]
ij

= det
[1

2
∂f

∂xi∂xj
(0)
]
ij
6= 0 (1.30)

The idea of the proof is now to change the representation of f in (1.27), which is a generalized
version of a quadratic form, to the form in (1.19), which is a genuine special quadratic form, by
induction on the number of terms in the generalized quadratic form of f . Assume therefore, that
there exists coordinates u1, . . . um in a neighborhood U1 of 0 such that

f = ±u2
1 + · · · ± u2

k−1 +
m∑

i,j=k

uiujHij(u1, . . . , um) (1.31)

in U1, where the matrices [Hij(u1, . . . , um)]ij are symmetric. After a linear change in the last
m− k+ 1 coordinates we may assume that ∂2f

∂x2
k

(0) 6= 0, and hence by (1.30) that Hkk(0) 6= 0. Since
Hkk is continuous, there exists a neighborhood U2 ⊂ U1 of 0 where Hkk is bounded away from zero.
Therefore we can introduce new smooth coordinates in yet another neighborhood U3 ⊂ U2:

vk =
√
|Hkk|

(
uk +

m∑
i=k+1

ui
Hik

Hkk

)
and vi = ui for i 6= k. (1.32)

Now we note that if we take the square of this coordinate function we obtain

v2
k = ±u2

kHkk ± 2
m∑

i=k+1

ukuiHik ± (
m∑

i=k+1

uiHik)2/Hkk (1.33)

with + all places if Hkk > 0 and − all places if Hkk < 0 in this neighborhood. Comparing this with
the expression (1.31) we see that

f = ±u2
1 + · · ·+ u2

k +
m∑

i,j=k+1

vivjHij −
( m∑
i=k+1

viHki

)2

/Hkk = ±v2
1 ± · · · ± v2

k +
m∑

i,j=k+1

vivjH
′
ij

where the last equality follows, since the two last terms are sums over vk+1, . . . , vm only. Since M
is finite dimensional, we conclude by induction that f can be given the required expression.

Corollary 1.1.1. A non-degenerate critical point is isolated.

Proof. Suppose p0 is a non-degenerate critical point of f : M → R. By [Morse lemma], there is a
local coordinate system (x1, . . . , xm) around p0, such that f has the form (1.19) in this neighborhood.
But functions of this type has no other critical points.

Corollary 1.1.2. A Morse function on a compact manifold admits only finitely many critical points.

Proof. Suppose for contradiction that the given Morse function has infinitely many critical points,
p1, p2 . . . ,. We claim, that this sequence has a convergent subsequence pn1 , pn2 , . . . . Indeed, since by
[BJ82, Whitney’s Theorem] we can embed M in RN , thus M is metrizable. The claim now follows
because every compact metrizable space is sequentially compact, cf. [Mun00, Theorem 28.2]. Let
p0 be the limit point1 of the sequence (pni)i≥1. Consider a local coordinate system (x1, . . . , xm) in
a neighborhood U around p0. By choosing a new subsequence if necessary, we may assume that
(pni)i≥1 ⊂ U . Now, since f ∈ C∞(M) the functions ∂f

∂xj
: M → R are continuous and since the

sequence (pni)i≥1 consists of critical points we get

∂f

∂xj
(p0) = lim

i→∞

∂f

∂xj
(pni) = lim

i→∞
0 = 0 for all j (1.34)

thus p0 is a critical point, cf. [Note 1]. However, since f is a Morse function, all critical points are
non-degenerate and hence isolated by [Corollary 1.1.1], which is a contradiction.
1Note that we are allowed to speak about the limit point since these are unique in a Hausdorff space. In particular,

these are unique in M
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Definition 1.1.5. If f : M → R is a Morse function with finitely many critical points, p1, . . . , pk,
we define the Morse polynomial of f to be

Pf (t) =
∑
p∈Crf

tλ(p) =
k∑
i=1

tλi =
∑
λ≥0

Cλt
λ (1.35)

where λi is the index of the critical point pi and Cλ is the number of critical points of index λ. The
coefficients are called the Morse numbers of the Morse function. C

In view of [Corollary 1.1.2], the Morse polynomial is well defined on any compact manifold. Note
furthermore, that Pf (1) is the number of critical points for f . As an example, we can look at the
following figure:

p1

p2

p3

p4

z

Figure 1.3: The height function restricts to a Morse function on the hypersurface, with four critical
points, p1, . . . , p4, cf. [Example 1.1.1]. The Morse polynomial is Pf (t) = 2t2 + t+ 1.

1.1.3 Existence of Morse functions

Of course, all of the theory developed so far would be utterly useless, if Morse functions did in fact
not exist. Luckily, this is not the case. On the contrary the set of Morse functions actually forms
a dense subset of the space of smooth functions. Since the derivation of this is rather lengthy, we
will only state the result, with the aim to understand exactly in which way we should interpret this
existence. For the full proof, the reader is advised to consult [Mil68], [Mat02] and [Nic07] who all
have detailed expositions of this matter.

If we embed a smooth manifold M in RN , which is possible by [BJ82, Whitney’s embedding theo-
rem], one can show that the function Lp : M → R given by Lp(q) = ‖p− q‖2 is a Morse function for
almost all p ∈ RN , cf. [Mil68]. Here the term “almost all” means all but a set of measure zero, and
comes from the application of Sard’s theroem, see [BJ82] and [Mil65] for a definition of measure zero
as well as proofs. The existence theorem claims that for any smooth function g : M → R there exits
a Morse function f : M → R “arbitrarily close” to g. Since there are plenty of smooth functions on
any smooth manifold around – take the constant ones for example – this would indeed guarantee
the existence of Morse functions. In order to explain what is meant by “arbitrarily close”, however,
we need the following definition:

Definition 1.1.6. The function f is a (C2, ε)-approximation of g on the compact set K, contained
in a coordinate neighborhood, if at every p ∈ K we have

|f(p)− g(p)| < ε,
∣∣∣ ∂f
∂xi

(p)− ∂g

∂xi
(p)
∣∣∣ < ε,

∣∣∣ ∂2f

∂xi∂xj
(p)− ∂2g

∂xi∂xj
(p)
∣∣∣ < ε (1.36)

for i, j = 1, . . . ,m. If M is compact, we have a compact cover M =
⋃k
i=1Ki, each belonging to

some coordinate neighborhood, and a function f : M → R is a (C2, ε)-approximation to a function
g : M → R, if f is a (C2, ε)-approximation of g on every Ki. C

We can now summarize the above discussion into the existence theorem of Morse functions, whose
proof, in various disguises, we encourage the reader to study in [Mil68], [Mat02] or [Nic07].

Theorem 1.1.1 (Existence). Let M be a smooth m-manifold. There exists an exhaustive Morse
function on M . If furthermore M is closed and g : M → R is a smooth function defined on M , then
there exists a Morse function f : M → R which is (C2, ε)-close to g : M → R.
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1.2 Vector fields and dynamics

Before we move on to the main theorems of classical Morse theory, we will in this section cover
some background material, which will be of great importance to the sequel. More specifically, we
will introduce the notion of a flow on a manifold with the purpose of creating a so called gradient-
like vector field on M . We will also cover some basic notions on Morse-Smale dynamics. Our
investigation is inspired by [Mil68] and [Nic07].

1.2.1 Gradient-like vector fields

For ease of reference, let’s recall again that a vector field on a manifold M is an assignment of a
tangent vector Yp ∈ TpM to each p ∈ M . It is called smooth, if to any smooth coordinate chart
(U, (xi)) around p,

Yp =
m∑
i=1

ai(p)
∂

∂xi

∣∣∣
p

(1.37)

for all p ∈ U , where the m component functions ai ∈ C∞(U) are smooth, see for example [Sch07]
or [Lee02]. We need a special type of such smooth vector fields taking the function f defined on M
into account.

Definition 1.2.1. Let M be a smooth manifold. A smooth map Φ : R×M → M is called a flow
on M , if for all p ∈M and all t, s ∈ R we have

Φ(0, p) = p, and Φ(t,Φ(s, x)) = Φ(t+ s, x) (1.38)

The map Φt : M → M defined by Φt(p) = Φ(t, p) defines a group homomorphism of (R,+) into
Diff(M), the group of diffeomorphisms of M onto itself, since we have Φs ◦Φt = Φs+t and Φ0 = idM
and thus Φ−1

t = Φ−t. C

Given a flow on M and a smooth real valued function f , we define a vector field X on M by

Xpf = lim
h→0

f(Φh(p))− f(p)
h

(1.39)

and we say that X generates the group Φ, or that X is the velocity field of the flow Φ. The following
lemma says that every vector field is the velocity field of exactly one flow, see [BJ82, Theorem 8.10]
for an alternative proof.

Lemma 1.2.1. A smooth vector field on M which vanishes outside a compact set K ⊂M generates
a unique flow on M .

Proof. Given any smooth curve γ : [0, 1]→M we have the velocity vector dγ
dt ∈ Tγ(t)M , which as a

derivation is given by dγ
dt (f) = limh→0

f(γ(t+h))−f(γ(t))
h , cf. [BJ82, p. 76]. Let Φ be a flow generated

by the smooth vector field X. For fixed p, the map αp : R→M defined by αp(t) = Φt(p), is called
the integral curve of p, see [BJ82, Definition 8.3]. We have

dαp(t)
dt

(f) =
dΦt(p)
dt

(f) = lim
h→0

f(Φt+h(p))− f(Φt(p))
h

= lim
h→0

f(Φh(Φt(p)))− f(Φt(p)
h

= lim
h→0

f(Φh(q))− f(q)
h

= Xq(f) = XΦt(p)(f) = Xαp(t)(f) (1.40)

where we have put q = Φt(p). The differential equation dαp(t)
dt = Xαp(t) with initial condition

αp(0) = p has a unique solution, which depends smoothly on the initial condition, see for example
[BJ82, p. 80-82]. Therefore, for each point in M there exists a neighborhood U and a number ε > 0
such that this differential equation has a unique smooth solution for p ∈ U and |t| < ε.

Since K is compact, we can cover it by finitely many such neighborhoods U . Let ε0 > 0 be the
smallest of these corresponding ε’s. Setting ϕ(p) = p for p /∈ K we see that this differential equation
has a unique smooth solution for |t| ≤ ε0 and all p ∈M . Furthermore, assuming |t|, |s|, |t+ s| ≤ ε0,
we have ϕs ◦ ϕt = ϕt+s thus each ϕt is a diffeomorphism.
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To define ϕt for |t| ≥ ε0, note that for any t ∈ R we can write t = k(ε0/2) + r for some k ∈ Z and
a remainder |r| < ε/2. We can then decompose ϕt as follows, if k ≥ 0:

ϕt = ϕε0/2 ◦ · · · ◦ ϕε0/2 ◦ ϕr (1.41)

where ϕε0/2 is composed with itself k times. If k < 0 we compose ϕ−ε0/2 with itself k times. It now
follows by construction that ϕt is well defined and satisfies ϕs ◦ ϕt = ϕs+t as required.

Definition 1.2.2. Let f : M → R be a Morse function. A smooth vector field X on M is said to
be gradient-like for f , if it satisfies the following two conditions:

1. X · f > 0 away from the critical points of f .

2. For every critical point p0 of f of index λ, there exists coordinates (xi) such that xi(p0) = 0,
f has the standard form (1.19) from the Morse lemma and

X = −2
λ∑
i=1

xi
∂

∂xi
+ 2

m∑
i=λ+1

xi
∂

∂xi
(1.42)

Note that this is indeed smooth by the definition given in the beginning. C

Therefore, outside the critical points of f , a gradient-like vector field X points in the direction
into which f is increasing. In particular, if f is the height function, then X points upward.

Figure 1.4: A gradient-like vector field.

Lemma 1.2.2. Suppose f : M → R is a Morse function on a smooth manifold M . Then there
exists a gradient-like vector field X for f .

Proof. Choose a Riemannian metric, g, on M , which is always possible, cf. [Lee02, Proposition
11.26]. Then in any smooth local coordinates, (xi), we can write it as

g = gijdx
i ⊗ dxj = gijdx

idxj (1.43)

where (gij)1≤i,j≤m is a symmetric positive definite matrix of smooth functions. In particular, since
we are locally in Rm, we can assume that this is the canonical Riemannian metric, such that
g = δi,jdx

idxj =
∑m
i=1(dxi)2, cf. [Lee02, p. 274], and that in these coordinates f has the form

f = f(p)−
λ∑
i=1

x2
i +

m∑
i=λ+1

x2
i (1.44)

from the Morse lemma. Denote by ∇f ∈Vect(M) the gradient of f with respect to the metric g.
This is defined to be the unique vector field that satisfies:

g(∇f, Z) = Zf (1.45)

for every vector field Z. Now, in local coordinates we then have

∇f =
∑
i,j

gij
∂f

∂xi
∂

∂xj
(1.46)
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where (gij)1≤i,j≤m is the inverse matrix to (gij)1≤i,j≤m, see [Lee02, p. 283]. In particular with the
canonical metric we have ∇f =

∑m
i=1

∂f
∂xi

∂
∂xi . Note that this gives us ∇f · f =

∑m
i=1( ∂f∂xi )

2 ≥ 0 and
that (∇f · f)(p) > 0 if p is not a critical point. Furthermore, for f of the form in (1.44) we get, near
a critical point p0:

∇f =
m∑
j=1

∂f

∂xj
∂

∂xj
=

λ∑
j=1

∂f

∂xj
∂

∂xj
+

m∑
j=λ+1

∂f

∂xj
∂

∂xj
= −2

λ∑
j=1

xj
∂

∂xj
+ 2

m∑
j=λ+1

xj
∂

∂xj
(1.47)

thus X = ∇f satisfies the two requirements from [Definition (1.2.2)] and is therefore a gradient-like
vector field.

1.2.2 Stable and unstable manifolds

We will now cover some theory about Morse-Smale dynamics, following [Nic07]. Suppose f : M → R
is a Morse function on a compact manifold M and X a gradient-like vector field for f . Denote by
Φt the flow on M determined by −X.

Lemma 1.2.3. For every p0 ∈ M the limits Φ±∞(p0) = limt→±∞Φt(p0) exists and are critical
points of f .

Proof. Given p0 ∈ M , we have the integral curve αp0(t) = Φt(p0). If αp0(t) is the constant path,
then we have −Xp0f = limt→0

f(αp0 (t))−f(p0)

t = 0 by (1.39) hence p0 is a critical point as desired,
cf. [Definition 1.2.2]. Now, suppose αp0(t) is not constant. From (1.40) and the fact that X · f ≥ 0
we deduce

ḟ(t) :=
d

dt
f(αp0(t)) = Dαp0 (t), ddtαp0 (t)f = Dαp0 (t),−Xαp0 (t)

f = −Xαp0 (t) · f ≤ 0 (1.48)

where we have used [Sch07, Theorem 3.7] and the definition of actions of smooth vector fields on
functions. Furthermore, since by definition of being a gradient like vector field, X · f > 0 away from
the critical points, and αp0(t) is not constant, we infer that

ḟ(t) < 0 for all t ∈ R. (1.49)

Now we define the set

Γ±∞ = {q ∈M | ∃(tn)n≥1 ⊂ R : tn → ±∞, lim
n→∞

αp0(tn) = q}. (1.50)

Since in a compact space, any sequence has a convergent subsequence, we conclude that Γ±∞ 6= ∅.
What the proposition claims is that this set contains just a single point, which is critical, thus we
go on to prove this.

It suffices to look at the case Γ∞, since the other case is completely similar. We claim that

Φt(Γ∞) ⊂ Γ∞, for all t ≥ 0. (1.51)

Indeed, suppose q ∈ Γ∞. Then we have a sequence (tn)n≥0 such that αp0(tn)→ q and hence

αp0(tn + t) = Φ(tn + t, p0) = Φt(αp0(tn))→ Φt(q) ∈ Γ∞ (1.52)

and the inclusion follows. Now, suppose q0, q1 ∈ Γ∞. Then by definition, we can find sequences
(t0n)n≥1 and (t1n)n≥0 such that limn→∞ αp0(tin) = qi. We can without loss of generality assume that
these are increasing, and defining (tn)n≥1 by alternating between these sequences we obtain

αp0(t2n+i)→ qi, i = 0, 1, t2n+1 ∈ (t2n, t2n+2). (1.53)

Since by the deduction above we have ḟ(t) < 0, we conclude that

f(αp0(t2n)) > f(αp0(t2n+1)) > f(αp0(t2n+2)). (1.54)

Letting n→∞ we infer by continuity of f that f(q0) = f(q1) and thus there exists c ∈ R such that

Γ∞ ⊂ f−1(c). (1.55)
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If q ∈ Γ∞ is not a critical point, then αq(t) ∈ Γ∞ is a non-constant trajectory of −X contained in
the level set f−1(c), but this is impossible since by the computations above f is strictly decreasing
on such trajectories. We conclude that

Γ∞ ⊂ Crf . (1.56)

Since critical points of Morse functions are isolated by [Lemma 1.1.1], it suffices to prove that Γ∞
is connected.

Now denote by C the set of connected components of Γ∞, and assume for contradiction that
|C| > 1. Fix a metric d on M and set

δ := min{dist(C,C ′) : C,C ′ ∈ C, C 6= C ′} > 0 (1.57)

Let C0 6= C1 ∈ C and qi ∈ Ci for i = 0, 1. Then by the same argument as before, there exists an
increasing sequence (tn)n≥1 such that

αp0(t2n+i)→ qi, i = 0, 1, t2n+1 ∈ (t2n, t2n+2) (1.58)

where we have

lim
n→∞

dist(αp0(t2n), C0) = dist(q0, C0) = 0 (1.59)

lim
n→∞

dist(αp0(t2n+i), C0) = dist(q1, C0) ≥ δ (1.60)

By [Mun00, Mean value theorem] applied to the continuous, real valued function t 7→ dist(αp0(t), C0),
we conclude that for n sufficiently large, there exits sn ∈ (t2n, t2n+1) such that

dist(αp0(sn), C0) =
δ

2
(1.61)

A subsequence of (αp0(sn))n≥1 converges to a point q ∈ Γ∞ such that dist(q, C0) = δ
2 , but this is

impossible since q ∈ Γ∞ ⊂ Crf\C0. This is the desired contradiction, thus Γ∞ is connected and we
conclude that Γ∞ contains exactly one critical point as desired.

Definition 1.2.3. Let f : M → R be a Morse function on a compact manifold with p0 a critical
point of f . The stable manifold S(p0) of p0 is the set of points which flow “down” to p0 and the
unstable manifold U(p0) of p0 is the set of points which flow “up” to p0, relative to the gradient
vector field X, that is

S(p0) = S(p0, X) = {x ∈M | lim
t→∞

Φt(x) = p0} (1.62)

U(p0) = U(p0, X) = {x ∈M | lim
t→−∞

Φt(x) = p0} (1.63)

We furthermore set F (p1, p2) = U(p1) ∩ S(p2). C

Proposition 1.2.1. Let λ be the index of the critical point p0. Then S(p0) and U(p0) are smooth
manifolds homeomorphic to Rm−λ and Rλ respectively.

Proof. Note that we have S(p0, X) = U(p0,−X), hence it suffices to look at the case with the
unstable manifold. The proof rests on the following fact that for ε > 0 sufficiently small, and
f(p0) = c0, the set Kε = U(p0) ∩ f−1(c0 − ε) is a sphere of dimension λ − 1 smoothly embedded
in the level set f−1(c0 − ε) with trivializable normal bundle. Indeed, by definition of X being a
gradient-like vector field, there exists coordinates (xi) such that x(p0) = 0 and

X = −2
λ∑
i=1

xi
∂

∂xi
+ 2

m∑
i=λ+1

xi
∂

∂xi
(1.64)

in the neighborhood N = {
∑λ
i=1 x

2
i +

∑m
i=λ+1 x

2
i } < r for some appropriate r > 0. Now an integral

curve αq(t) of −X converging to p0 as t → −∞ stays inside N for t sufficiently small, but all such
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integral curves have the form e2t(x1, x2, . . . , eλ, 0, . . . , 0), cf. [Nic07, p. 35] and they are all included
in the λ-dimensional disc:

D(p0, r) =
{ λ∑
i=1

x2
i ≤ r, xi = 0 for i > λ

}
(1.65)

By the arguments from [Lemma 1.2.3], f is strictly decreasing on such non-constant trajectories,
thus if ε < r, then

Kε = U(p0) ∩ f−1(c0 − ε) = ∂D(p0, ε)
ϕ
' Sλ−1 (1.66)

which was the claim. Finally, let (r, θ) ∈ R × Sλ−1 denote the polar coordinates on Rλ and define
the following smooth map

F : Rλ → U(p0) by F (r, θ) = αϕ−1(θ)( 1
2 log r) (1.67)

Which by the above derivations is seen to be the required diffeomoprhism.

It follows that a Morse function f on M provides two decompositions of M into disjoint cells:

M =
⋃
p

S(p) =
⋃
p

U(p) (1.68)

where the union is over all critical points p of f . These will be called the stable and unstable
manifold decompositions respectively. We note that the Morse condition is of crucial importance
here. Indeed, in general, critical points are not necessarily isolated, and flow lines do not necessarily
converge to critical points, cf. [Gue02]. However, given the unstable manifold decomposition above,
we wish to examine how these cells fit together, and this will be the theme of the next section.

1.3 The Morse Principles

This section will contain the main theorems of classical Morse Theory. In the following we assume
that M is a smooth, m-dimensional manifold, and that f : M → R is an exhaustive Morse function,
that is, the sublevel set:

M t = f−1(−∞, t] = {p ∈M | f(p) ≤ t} (1.69)

is compact for every t ∈ R. We will explain how these sublevel sets in a certain sense stays unchanged
when we do not meet any critical points, and, more surprisingly, how a change looks when we do pass
a critical point of some index λ. This is the weak and strong principles of Morse theory respectively,
which we will now prove, following [Nic07] and [Mil68] respectively.

1.3.1 The Weak Morse Principle

Theorem 1.3.1 (Weak Morse principle). Suppose that the set f−1[a, b] is compact and contains no
critical points of f . Then Ma is diffeomorphic to M b. Furthermore Ma is a deformation retract of
M b, so that the inclusion Ma ↪→M b is a homotopy equivalence.

Proof. We clearly have f−1[a, b] ⊂M t for t > b, which by assumption is compact, thus M c contains
only finitely many critical points, cf. [Corollary 1.1.2]. Since we have assumed that f−1[a, b] has no
critical points, we infer that there exists ε > 0 such that f−1[a− ε, b+ ε] has no critical points.

Fix a gradient-like vector field Y and construct a smooth function ρ : M → [0,∞) by

ρ(p) =
{
|Ypf |−1 if f(p) ∈ [a, b]

0 if f(p) /∈ [a− ε, b+ ε] (1.70)

using suitable bump functions. Note that this is well defined since f−1[a, b] contains no critical points
by assumption. Define a new vector field X on M by X = −ρY . Then X satisfies the conditions
of [Lemma 1.2.1] hence it generates a flow Φ on M , such that for an integral curve αp(t) : R→ M
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defined by t 7→ Φt(p), see [BJ82, Definition 8.3], we have d
dtαp(t) = Xαp(t). Differentiating along

this curve we see that in the region f−1[a, b], we have

d

dt
f(αp(t)) = Xαp(t)f = −ρ(αp(t))Yαp(t)f =

−1
Yαp(t)f

Yαp(t)f = −1 (1.71)

hence in the region f−1[a, b], the function f decreases at constant unit speed. Therefore, for p ∈M b

we have f(Φb−a(p)) = f(αp(b− a)) ≤ f(b− (b− a)) = f(a) and similarly for p ∈Ma, f(Φa−b(p)) ≤
f(b). We conclude that

Φb−a(M b) = Ma and Φa−b(Ma) = M b (1.72)

hence Φb−a is a diffeomorphism between M b and Ma as required. To see that Ma is a deformation
retract, define the homotopy

H : M b × [0, 1]→M b by H(p, t) =
{

p if f(p) ≤ a
Φt(f(p)−a)(p) if a ≤ f(p) ≤ b (1.73)

Then for p ∈ Ma we have H(t, p) = p for all t ∈ [0, 1] while for p ∈ M b we have H(p, x) =
Φf(p)−a(p) ∈ Ma, that is H is a homotopy between the identity and a retraction i.e. H is a
deformation retraction of M b onto Ma as desired, cf. [Hat02].

1.3.2 Strong Morse Principle

The problem is therefore to determine how the shape of M t changes as the parameter t passes
through a critical value. Surprisingly, the information of the index of the critical point is sufficient
to show the following beautiful result, outlined in [Mil68].

Theorem 1.3.2 (Strong Morse Principle). Let p0 be a non-degenerate critical point with index λ.
Setting f(p0) = c, suppose that f−1[c − ε, c + ε] is compact and contains no other critical point for
some ε > 0. Then for all ε sufficiently small, the set M c+ε has the homotopy type of M c−ε with a
λ-cell attached.

Proof. By [Morse Lemma], we can find local coordinates (ui) in a neighborhood U of p such that

f = c− u2
1 − · · · − u2

λ + u2
λ+1 + · · ·+ u2

m (1.74)

and ui(p0) = 0 for all i. Choose ε > 0 sufficiently small such that

• f−1[c− ε, c+ ε] is compact and contains no other critical points than p.

• The image of U under the diffeomorphism (u1, . . . , um) : U → Rm contains the closed disc

D = {(u1, . . . , um) |
m∑
i=1

u2
i ≤ 2ε} (1.75)

Define the λ-cell, eλ, to be the subset of U with

u2
1 + · · ·+ u2

λ ≤ ε and uλ+1 = · · · = um = 0 (1.76)

Then we are in the situation depicted in the following figure, in the case of f being the height
function and M the torus:

Note that it makes sense to attach such a cell to M c−ε, since their intersection satisfies:

eλ ∩M c−ε = {u |
λ∑
i=1

u2
i ≤ ε} ∩ {x ∈M | f(x) ≤ c− ε} = {u |

λ∑
i=1

u2
i ≤ ε,−

λ∑
i=1

+
m∑

i=λ+1

u2
i ≤ −ε}

= {u |
λ∑
i=1

u2
i = ε, uλ+1 = · · · = um = 0} = ∂eλ (1.77)
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eλ

(u1, . . . , uλ)-axis

(uλ+1, . . . , um)-axis

f−1(c)

Figure 1.5: Schematic presentation, when f is the height function on T 2.

We must prove that M c−ε ∪ eλ is a deformation retract of M c+ε. We will do this in two steps. For
the first step, we will construct a new function F : M → R which coincides with the original Morse
function f except in a neighborhood, where F < f , allowing us to utilize the weak Morse principle
and thus deformation retract M c+ε to a sublevelset of F still containing eλ. In the second step, we
will then find an explicit deformation retraction of this sublevelset onto M c−ε ∪ eλ.

In order to define the function F , we first define the smooth function µ : R→ R such that

µ(0) > ε, µ(r) = 0 for r > 2ε, −1 < µ′(r) ≤ 0 for all r (1.78)

ε

2ε

µ

Now let F : M → R coincide with f outside the neighborhood U , and let

F = f − µ
( λ∑
i=1

u2
i + 2

m∑
i=λ+1

u2
i

)
(1.79)

within U . Then F is well defined and smooth on M . Indeed, since f is smooth, F is a composition
of smooth functions inside U and obviously outside U . Furthermore, since µ is zero outside D, which
is contained in U by construction, we conclude that F is smooth.

Figure 1.6: The functions F and f

Define yet another two functions

ζ, η : U → [0,∞) by ζ =
λ∑
i=1

u2
i and η =

m∑
i=λ+1

u2
i (1.80)

Then clearly, in the neighborhood U , we have f = c− ζ + η and thus

F (p) = c− ζ(p) + η(p)− µ(ζ(p) + 2η(p)) (1.81)

for all p ∈ U . Next we need the following intermediate lemma:
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Lemma 1.3.1. The function F satisfies the following properties:

(i) F is a Morse function with the same critical points as f .

(ii) The region F−1(−∞, c+ δ] coincides with the region f−1(−∞, c+ δ] for all δ ≥ ε.

Proof. Clearly outside D, the function F and f have the same critical points since they are identical
in this region. Now inside D we have

F = f − µ(ζ + 2η) = c− ζ + η − µ(ζ + 2η). (1.82)

Therefore we obtain the following, using the defining property of the derivative of µ:

∂F

∂ζ
= −1− µ′(ζ + 2η) < 0, and

∂F

∂η
= 1− 2µ′(ζ + 2η) ≥ 1 (1.83)

Furthermore we see that

dF =
∂F

∂ζ
dζ +

∂F

∂η
dη, (1.84)

where dζ and dη are only zero at the origin. Since the other factors are bounded away from zero,
we conclude that F has no other critical points in U , and the first part follows.

To see that (ii) holds, note that we clearly have F−1(−∞, c + δ] ∩ Dc = f−1(−∞, c + δ] ∩ Dc.
Furthermore, since F ≤ f , we have the general inclusion

f−1(−∞, a] = {x ∈M | f(x) ≤ a} ⊂ {x ∈M |F (x) ≤ a} = F−1(−∞, a] (1.85)

for all a ∈ R. It thus suffices to prove the inclusion F−1(−∞, c+δ]∩D ⊂ f−1(−∞, c+δ]∩D. Suppose
p ∈ F−1(−∞, c+ δ]∩D. Then ζ(p) + η(p) ≤ 2ε and F (p) = c− ζ(p) + η(p)−µ(ζ(p) + 2η(p)) ≤ c+ δ
which gives us

η(p) ≤ ζ(p) + δ + µ(η(p) + 2ζ(p)) (1.86)

Using the fact that −1 < µ′(r) ≤ 0 we get µ(t)− µ(2ε) ≤ 2ε− t for all t ≤ 2ε and hence

µ(t) = µ(t)− µ(2ε) ≤ 2ε− t ≤ 2δ − t (1.87)

for all t ≤ 2ε, where we use that µ(2ε) = 0. Therefore, if ζ + 2η ≤ 2ε, we obtain

η(p) ≤ ζ(p) + δ + µ(η(p) + 2ζ(p)) ≤ ζ(p) + δ + 2δ − ζ(p)− 2η(p) = 3δ − 2η(p) (1.88)

and thus η(p) ≤ δ. This in turn gives η(p) − ζ(p) ≤ δ i.e. f − c ≤ δ and thus finally f ≤ c + δ as
desired. Clearly, if ζ(p) + 2η(p) ≥ 2ε then f(p) = F (p) ≤ c+ ε, completing the proof.

We can now proceed with the proof of the strong Morse principle. Consider F−1[c− ε, c+ ε]. By
the lemma and the inclusion F−1[c− ε,∞) ⊂ f−1[c− ε,∞), which follows by the same argument as
in (1.85), we see that

F−1[c− ε, c+ ε] = F−1((−∞, c+ ε] ∩ [c− ε,∞)) = F−1(−∞, c+ ε] ∩ F−1[c− ε,∞) (1.89)

⊂ f−1(−∞, c+ ε] ∩ f−1[c− ε,∞) = f−1[c− ε, c+ ε]

Furthermore, since f−1[c− ε, c+ ε] is assumed compact, F−1[c− ε, c+ ε], being a closed subset, is
itself compact. Since p is the only critical point in f−1[c − ε, c + ε], and F has the same critical
points, p is the only possible critical point in F−1[c− ε, c+ ε], but

F (p) = c− ζ(p) + η(p)− µ(ζ(p) + 2η(p)) = c− µ(0) < c− ε (1.90)

thus F−1[c−ε, c+ε] contains no critical points. Therefore, by [Weak Morse Principle] and the lemma
we see that F−1(−∞, c− ε] is a deformation retract of F−1(−∞, c+ ε] = f−1(−∞, c+ ε] = M c+ε.
This was the first step.

Now, for the second step, denote F−1(−∞, c − ε] by M c−ε ∪ H where H is the closure of
F−1(−∞, c− ε]−M c−ε, and let the cell eλ be the set of points p ∈ U with ζ(p) ≤ ε, η(p) = 0. Note
that eλ ∈ H. Indeed, since [calculation to come]

15



We claim that M c−ε ∪ eλ is a deformation retract of M c−ε ∪H. This is depicted schematically
in figure 1.7. More explicitly, we define a deformation retraction R : (M c−ε ∪ H) × I → M c−ε as
follows:

R(p, t) =


p if p /∈ U

(u1, . . . , uλ, tuλ+1, . . . , tum) if p ∈ U, ζ ≤ ε
(u1, . . . , uλ, s(t)uλ+1, . . . , s(t)um) if p ∈ U, ε ≤ ζ ≤ η + ε

(u1, . . . , um) if p ∈ U, η + ε ≤ ζ

(1.91)

where s : [0, 1] → R is given by s(t) = t + (1 − t)
√

(ζ − ε)/η. We must check that this is indeed a
well defined deformation retraction, and divide this into the three nontrivial interesting cases, see
figure 1.7.

Case 1

Case 2

Case 2
Case 3

Case 3

Figure 1.7: Schematic presentation

1. For ζ ≤ ε we have R(p, 1) = (u1, . . . , um) = p and R(p, 0) = (u1, . . . , uλ, 0, . . . , 0) ∈ eλ. Thus
in this region R is a homotopy between the identity and a retraction, which collapses the entire
region into eλ, i.e. R is a deformation retraction.

2. For ε ≤ ζ ≤ η + ε we first note, that the function s is well defined and continuous since by
assumption ζ− ε ≥ 0. Since s(1) = 1 and s(0) =

√
(ζ − ε)/η we have R(p, 1) = (u1, . . . , um) =

p and R(p, 0) = (u1, . . . , uλ,
√

(ζ − ε)/η uλ+1, . . . ,
√

(ζ − ε)/η um) and since

f(u1, . . . , uλ,
√

(ζ − ε)/η uλ+1, . . . ,
√

(ζ − ε)/η um)

= c− u2
1 − · · · − u2

λ +
ζ − ε
η

u2
λ+1 + · · ·+ ζ − ε

η
u2
m (1.92)

= c− ζ +
ζ − ε
η

η = c− ε

we have R(p, 0) ∈ f−1(c − ε). Thus again, we have a deformation retraction. Note that this
corresponds to case 1 since when ζ = ε we have s(t) = t.

3. Finally, if η + ε ≤ ζ, or in other words f = c − ζ + η ≤ c − ε, that is we are in M c−ε, then
R(p, t) = (u1, . . . , um). This coincides with the previous case, since when ζ = η + ε we have
s(t) = t+ (1− t)

√
(ζ − ε)/η = t+ (1− t)

√
η/η = 1.

We conclude that R is indeed a well defined deformation retraction and thus M c−ε ∪ eλ is a defor-
mation retract of M c−ε ∪H = F−1(−∞, c− ε] which by the above is again a deformation retract of
M c+ε. Composing these gives the desired homotopy equivalence.

We can generalize this to the general case where we have k non-degenerate critical points in the
pre-image, using the fact that these are isolated, cf. [Corollary 1.1.1]. The proof rests on the fact
that we can raise and lower critical values without changing the critical points, see [Mat02]. We
state and prove this fact for future reference:

Lemma 1.3.2 (Raising and lowering critical values). Suppose f : M → R is a Morse function with
critical points p1, . . . , pk. Then there exists a Morse function f ′ : M → R with the same critical
points where f ′(pi) 6= f ′(pj) for i 6= j.
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Proof. Suppose f(p1) = f(p2) = c. By [Morse lemma] we can find local coordinates (ui) such that

f = c− u2
1 − · · · − u2

λ + u2
λ+1 + · · ·+ u2

m (1.93)

Let X be a gradient-like vector field for f . Then we have

X · f =
m∑
i=1

( ∂f
∂ui

)
= 4

m∑
i=1

ui (1.94)

Since the critical points are isolated by [Corollary 1.1.1], we can find ε > 0 such that the m-
dimensional discs B(p1, ε) and B(p1, 2ε) does not contain any other critical points. Furthermore, in
the region B(p1, 2ε)−B(p1, ε) we have

4ε2 ≤ X · f ≤ 4(2ε)2 (1.95)

There exists a bump function

h ∈ C∞(M) such that 0 ≤ h ≤ 1
and h(q) = 1 for q ∈ B(p1, ε) and h(q) = 0 forq /∈ B(p1, 2ε)

see for example [Sch07, Lemma 5.4]. Now we define the function

f̃ : M → R by f̃ = f + ah (1.96)

for some a ∈ R\0 small enough. Outside B(p1, 2ε) we have f = f̃ and in B(p1, ε) we still only have
p1 as critical point since h = 1 in this region. Therefore, we only need to check that ??? contains
no critical points. To see this, note that∣∣∣ ∂f

∂ui
− ∂f̃

∂ui

∣∣∣ =
∣∣∣a ∂f
∂ui

∣∣∣, i = 1, . . . ,m (1.97)

Then by continuity, we conclude that the distance∣∣∣ m∑
i=1

( ∂f
∂ui

)2

−
m∑
i=1

( ∂f̃
∂ui

)2∣∣∣ (1.98)

can be made as small as desired. In particular, since X · f takes the minimum value 4ε2 > 0

in
∑m
i=1

(
∂f
∂ui

)2

, we can make
∑m
i=1

(
∂f̃
∂ui

)2

attain a positive minimum value by choosing a small

enough. Therefore, f̃ has the same set of critical values as f , and by construction they are still
non-degenerate. We conclude that f̃ is a Morse function, and

f̃(p1) = f(p1) + a, f̃(p2) = f(p2) (1.99)

thus f̃(p1) 6= f̃(p2). Continuing in this fashion gives the required function.

From this fact, the general case reduces to what we have already proved, thus we immediately
arrive at the following corollary, which we will likewise call the strong Morse principle.

Corollary 1.3.1. Suppose f−1(c) contains k non-degenerate critical points p1, . . . , pk with indices
λ1, . . . , λk. Then M c+ε has the homotopy type of M c−ε ∪ eλ1 ∪ · · · ∪ eλk .

1.3.3 CW decomposition

With [Corollary 1.3.1], also called the structural theorem of classical Morse theory, now in place, we
will here prove the Main Theorem, namely that we can give a manifold with an exhaustive Morse
function defined on it a CW-complex structure, again following the beautiful exposition of [Mil68].

Theorem 1.3.3 (Main Theorem). If f : M → R is an exhaustive Morse function, then M has the
homotopy type of a CW -complex, with one cell of dimension λ for each critical point of index λ.
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Proof. Let c1 < c2 < . . . be the critical values of f , of which there might be infinitely many. Since
f is exhaustive, each Ma is compact, and thus, by the proof of 1.1.2, the sequence (ci)i≥1 can have
no limit point. We can therefore prove the theorem by induction. Clearly, Ma = ∅ for a < c1,
thus the induction start is vacuously satisfied. Now suppose a 6= c1, c2, . . . and that Ma has the
homotopy type of a CW-complex, that is there exits a homotopy equivalence g : Ma → K where K
is a CW-complex. Let c be the smallest ci > a and j(c) = ]f−1(c). Then for ε > 0 small enough, it
follows by [Corollary 1.3.1] that M c+ε has the homotopy type of M c−ε ∪ eλ1 ∪ϕi · · · ∪ϕj(c) eλj(c) for
certain attaching maps ϕ1, . . . , ϕj(c). Furthermore, by [Weak Morse Principle], there is a homotopy
equivalence h : M c−ε →Ma.

Then by [Hat02, Cellular Approximation], each map g ◦ h ◦ ϕi : ∂eλi → K, going between CW-
complexes is homotopic to a cellular map, i.e. a map which maps cells to cells of the same or lower
dimension. Therefore g ◦ h ◦ ϕi is homotopic to a map

ψi : ∂eλi → Kλ−1 (1.100)

where Kλ−1 denotes the (λ− 1)-skeleton of the CW complex K. Since the map g ◦ h : M c−ε → K
is a homotopy equivalence, it extends to a homotopy equivalence [Elaborate, do we know lemma 3.7
in Milnor?]

F : M c−ε ∪ϕ1 e
λ1 ∪ϕ2 · · · ∪ϕj(c) e

λj(c) → K ∪ψ1 e
λ1 ∪ψ2 · · · ∪ψj(c) e

λj(c) (1.101)

where K ∪ψ1 e
λ1 ∪ψ2 · · · ∪ψj(c) eλj(c) is a CW-complex of the same homotopy type as M c+ε by the

above. By induction, it follows that each M t has the homotopy type of a CW-complex.
If M is compact, then M = M t for t = max{f(x) |x ∈M} and we are done. If M is not compact,

but all critical points lie in some M t, then by a slight modification of [Weak Morse Principle], we
see that M deformation retracts to M t and thus we are done. Finally, if there are infinitely many
critical points, we obtain, by the above construction, a whole sequence of homotopy equivalences
between the sublevel sets Mai and corresponding CW-complexes Ki as follows:

Ma1
� � //

��

Ma2
� � //

��

Ma3
� � //

��

. . .

K1
� � // K2

� � // K3
� � // . . .

each extending the previous one. Now, let K =
⋃
iKi in the weak topology, see [Fol99, p. 120],

and let l : M → K be the limit map. Then l induces isomorphisms of homotopy groups on all
dimensions hence by [Hat02, Whitehead’s Theorem], l is a homotopy equivalence as required.

1.3.4 Examples and applications

With the main theorem of classical Morse theory now at our disposal, we pause the development of
the theory for a moment, to look at some interesting examples and immediate applications, inspired
by [Mil68]. We shall also touch upon what will turn out to be our first premature example of a
complex Grassmannian, the complex projective space.

Proposition 1.3.1. Any smooth manifold has the homotopy type of a CW-complex.

Proof. By the Existence theorem of Morse functions, any manifold M has a Morse function for
which each Ma is compact. Now the main theorem gives the required CW-decomposition of M .

Proposition 1.3.2 (Reeb). If f : M → R is a Morse function on a compact manifold with only
two critical points, then M is homeomorphic to a sphere.

Proof. Since any continuous function on a compact set has a minimum and a maximum, the two
critical points must correspond to these. Say f(p−) = 0 is the minimum and f(p+) is the maximum.
By [Morse lemma], we know that in a neighborhood of p− we can write f in the standard form.
Since we cannot attain smaller values, the index λ has to be 0 and therefore, for ε > 0 small enough:

M ε = f−1[0, ε] = {x ∈M | f(x) ≤ ε} = {x ∈M |x2
1 + · · ·+ x2

m ≤ ε} ' Dm
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Likewise for the point p+ corresponding to the maximal value, we cannot attain larger values hence
the index is m and therefore we obtain:

f−1[1− ε, 1] = {x ∈M | f(x) ≥ ε} = {x ∈M | 1− x2
1 − · · · − x2

m ≥ 1− ε} ' Dm

Furthermore, since f−1[ε, 1 − ε] is compact, being a closed subset of the compact space M , and
it contains no critical points, it follows from [Theorem 1.3.1, Weak Morse Principle] that M ε is
diffeomorphic to M1−ε. Since M = M1−ε ∪ f−1[1 − ε, 1], we conclude that M is the union of two
closed n-discs, which are clearly homeomorphic to the northern and southern hemisphere, glued
along their common boundary, that is M is homeomorphic to Sm.

Note 3. If we furthermore have dimM ≤ 6 in the theorem above, then it turns out that M is
actually diffeomorphic to a sphere. That this is not the case in general follows from the highly
non-trivial fact, that a 7-sphere can have several differentiable structures, see [Mil56]. ♦
Example 1.3.1. We shall here derive a CW-complex structure of CPn, which we will later see is
the Grassmannian Gr1(Cn). It is well known that CPn, the set of 1-dimensional complex-linear
subspaces of Cn+1 with the quotient topology inherited from the natural projection π : Cn+1\{0} →
CPn, which we will think of as the equivalence classes of (n + 1)-tuples (z0, . . . , zn) of complex
numbers with

∑n
j=0 |zj |2 = 1, is a smooth, compact manifold, when we equip it with the atlas:

Ui = {(z0 : z1 : · · · : zn) | zi 6= 0}, (1.102)

ϕi : Ui → Cn defined by ϕi(z0 : · · · : zn) = |zi|
(z0

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn+1

zi

)
. (1.103)

Now define the real function f : CPn → R by

f(z0 : z1 : · · · : zn) =
n∑
i=0

ci|zi|n (1.104)

where ci ∈ R are fixed and ci 6= cj for i 6= j. We claim that this is a Morse function. Indeed, if we
divide the complex coordinates in the mage of ϕi into real and imaginary parts, we have

|zi|
zj
zi

= xj + iyj (1.105)

where we have suppressed the i. Now, if we just consider the case i = 0, then x1, y1, . . . , xn, yn :
U0 → R maps U0 diffeomorphically onto the open unit ball in R2n. We have

x2
j + y2

j = (xj + iyj)(xj − iyj) = |zi|
zj
zi
|zi|

zj
zi

= |zj |2 and thus (1.106)

|z0|2 =
n∑
j=1

|zj |2 =
n∑
j=0

|zj |2 −
n∑
j=1

|zj |2 = 1−
n∑
j=1

|zj |2 = 1−
n∑
j=1

(xj + yj) (1.107)

Therefore, in the coordinate neighborhood U0, we can write the function f as:

f = c0|z0|2 +
n∑
i=1

ci|zi|n = c0(1−
n∑
j=1

(xj + yj)) +
n∑
j=1

cj(xj + yj) = c0 +
n∑
j=1

(cj − c0)(xj + yj)

We conclude that the only critical point of f in U0 is the point p0 = (1 : 0 : · · · : 0), which is
furthermore non-degenerate. The index is 2δ0 where δ0 = ]{j | cj < c0, 0 ≤ j ≤ n}. Similarly, we
have critical points:

p1 = (0 : 1 : 0 : · · · : 0), . . . , pn = (0 : · · · : 0 : 1) (1.108)

which are then the only critical points of f , and the index of pk is 2δk where δk = ]{j | cj < ck, 0 ≤
j ≤ n}. Therefore, every even integer between 0 and 2n occurs precisely once. By the main theorem,
CPn has the homotopy type of a CW-complex of the form

e0 ∪ e2 ∪ · · · ∪ e2n (1.109)

This CW-structure contains an immense amount of information, and thus shows the strength of the
main theorem. For example, by cellular homology, one can immediately see that Hi(CPn) = Z for i
even and Hi(CPn) = 0 for i odd. In the final chapter, we shall engage in the project of generalizing
results as these to a more general class of spaces – the Grassmannians.
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1.4 Morse inequalities

As the previous sections clearly show, there is a subtle relation between the topology of M and
the critical point data of a function f : M → R. Although the main theorem does not tell us
anything about the attaching maps, which is a serious disadvantage, we can still deduce quite a lot
of information about the topology of M . The main example illustrating this is the so called Morse
inequalities. These states that if f is a Morse function on a compact manifold, M , then the number
of critical points of index λ is greater then or equal to the λ-th Betti number of M , [Gue02]. In
other words, topology provides a constraint on analysis.

1.4.1 Terminology

We will first need to introduce some terminology, following [Nic07], which, as we shall see, will soon
turn out to be a reasonable investment for the coming sections as well. Denote by Z[t, t−1] the ring
of formal Laurent series with integer coefficients, that is

Z[t, t−1] =
{∑
n∈Z

ant
n
∣∣∣ an ∈ Z, an = 0∀n� 0

}
(1.110)

and define an order relation � on this ring as follows:

X(t) � Y (t)⇔ ∃Q ∈ Z[t, t−1] with nonnegative coefficients such that X(t) = Y (t) + (1 + t)Q(t)

Note 4. The (partial) order relation � is well defined. Indeed, it is reflexive since X � X with
Q ≡ 0. It is antisymmetric since if X � Y and Y � X, then X(t) = Y (t) + (1 + t)Q1(t) and
Y (t) = X(t)+(1+ t)Q2(t) and thus X(t) = X(t)+(1+ t)(Q1(t)+Q2(t)) hence Q1 = Q2 ≡ 0, that is
X = Y . Finally, it is transitive since if X � Y and Y � Z then X(t) = Z(t) + (1 + t)(Q1(t) +Q2(t))
with obvious notation, where Q1 + Q2 ∈ Z[t, t−1] has nonnegative coefficients, thus X � Z as
required. We conclude that � is indeed a partial order relation. In particular we note that

X � Y ⇔ X +R � Y +R, ∀R ∈ Z[t, t−1],
X � Y, Z � 0⇒ X · Z � Y · Z

Definition 1.4.1. Let F be a field. A graded F-vector space, that is a vector space which decomposes
into a direct sum A• =

⊕
n∈F An, is said to be admissible if dimAn <∞ and An = 0 for all n� 0.

To such an A• we define

PA•(t) =
∑
n

(dimAn)tn ∈ Z[t, t−1] (1.111)

which is called the Poincaré series associated to A•. C

Lemma 1.4.1. Suppose we have a long exact sequence of admissible graded vector spaces A•, B•, C•:

// Ak
ik // Bk

jk // Ck
∂k // Ak−1

// . . .

then PA• + PC• � PB• .

Proof. To simplify notation, we let

ak = dimAk, bk = dimBk, ck = dimCk

αk = dim ker ik, βk = dim ker jk, γk = dim ker ∂k

Then by [Ped00, Rank nullity theorem] we obtain ak = dimAk = dim ker ik+dim Im ik = dim ker ik+
dim ker jk = αk + βk. Similarly we get bk = βk + γk and ck = γk + αk−1. Therefore

ak − bk + ck = αk + βk − (βk + γk) + γk + αk−1 = αk + αk−1 (1.112)

which gives us

PA•(t)− PB•(t) + PC•(t) =
∑
k

(ak − bk + ck)tk =
∑
k

(αk + αk−1)tk = (1 + t)Q(t) (1.113)

where Q(t) =
∑
k akt

k and ak ≥ 0 for all k. Therefore PA•(t) + PC•(t) = PB•(t) + (1 + t)Q(t), that
is PA• + PC• � PB• as desired.
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1.4.2 Topological Morse Inequalities

For every compact topological space, X, we denote by Bλ(X) = Bλ(X,F), the λ’th Betti number
with coefficients in F, that is Bλ = dimHλ(X,F) and by PX(t) = PX,F(t) the Poincaré polynomial

PX,F(t) =
∑
λ

Bλ(X,F)tλ (1.114)

If Y is a subspace of X, we define the relative Poincaré polynomial similarly. We can then write
the Euler characteristic of X, see for example [Hat02, p. 146] for an introduction to this topological
invariant, as follows

χ(X) =
∑
λ

(−1)λ dimHλ(X,F) =
∑
λ

(−1)λBλ(X) = PX(−1) (1.115)

Proposition 1.4.1 (Topological Morse inequalities). Let f : M → R be a Morse function on a
smooth compact manifold. Then

Pf (t) � PM (t) (1.116)

where Pf is the Morse polynomial. In particular, χ(M) =
∑
λ(−1)λCλ.

Proof. Now, let f : M → R be a Morse function. Choose a0 < a1 < · · · < ak such that Mai contains
precisely i critical points and Mak = M . Note that this is possible by [Lemma 1.3.2]. From the
long exact sequence of homology for the pair (Mai ,Mai−1)

. . . // Hn(Mai−1) // Hn(Mai) // Hn(Mai ,Mai−1) // Hn−1(Mai−1) // . . .

we have
⊕

nHn(Mai) = H•(Mai) and thus PH•(M
ai) =

∑
n dimHn(Mai)tn =

∑
λBλ(Mai)tλ =

PMai . Likewise PH•(Mai−1 ) = PMai−1 and PH•(Mai ,Mai−1 ) = PMai ,Mai−1 . Note that this makes
sense because M is compact. Indeed by [Corollary 1.1.2] there are only finitely many critical points
and thus by [Main Theorem 1.3.3] we can give any sublevel set a finite CW-complex structure – in
particular the various homology groups are finitely generated as required. Now by [Lemma 1.4.1]
we get

PMai−1 + PMai ,Mai−1 � PMai (1.117)

Summing over all the sublevel sets we obtain

k∑
i=1

PMai−1 +
k∑
i=1

PMai ,Mai−1 �
k∑
i=1

PMai thus by note 4
k∑
i=1

PMai ,Mai−1 � PM

where we have used that Mak = M . We claim that if λi is the index if the critical point in
Mai −Mai−1 , then

Hn(Mai ,Mai−1) = Hn(Mai−1 ∪ eλi ,Mai−1) = Hn(eλi , ∂eλi) = Hn(Dλi , ∂Dλi)

=
{

Z if n = λi
0 if n 6= λi

(1.118)

Indeed, the first equality comes from [Strong Morse Principle] and the fact that homology is homo-
topy invariant, cf. [Hat02, Theorem 2.10]. Let ε(eλi) be an ε-neighborhood of the cell. Noting that
∂eλi ' Mai−1 ∩ ε(eλi) and the interiors cover Mai−1 ∪ eλ, it follows by excision that the inclusion
(eλi , ∂eλi) ↪→ (Mai−1∪eλi ,Mai−1) induces isomorphisms on homology for all n, cf. [Hat02, Excision
theorem]. The last equation in (1.118) follows from the long exact sequence of reduced homology
groups for the pair (Dλi , ∂Dλi). The maps Hn(Dλi , ∂Dλi) → H̃n−1(Sλi−1) are isomorphisms for
all n > 0, since the remaining terms H̃n(Dλ

i ), where Dλi is contractible, are zero for all n. Finally,
H̃n−1(Sλi−1) = Z exactly in the case n = λi, cf. [Hat02, Corollary 2.14], thus equation (1.118)
holds. By definition of the relative Poincaré polynomial, we then have

Pf (t) =
∑
λ

Cλt
λ =

k∑
i=1

PMai ,Mai−1 (t) � PM (t) (1.119)

as desired. In particular, by definition of the order relation, we have χ(M) = PM (−1) = Pf (−1)−
(1− 1)Q(−1) = Pf (−1) =

∑
(−1)λCλ as required.
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Corollary 1.4.1 (Weak Morse Inequalities). Let f : M → R be a Morse function on a compact
manifold. Then Bλ(M) ≤ Cλ for all λ.

Proof. By the proposition we have Pf (t) � PM (t), that is
∑
λ Cλt

λ =
∑
λBλ(M)tλ + (1 + t)Q(t)

where Q ∈ Z[t, t−1] has non-negative coefficients. It follows that Cλ ≥ Bλ(M) for all λ.

Corollary 1.4.2 (Morse’s Lacunary Principle). Let f : M → R be a Morse function on a compact
manifold M . If no consecutive powers of t occur in the Morse polynomial Pf (t), then Pf (t) = PM (t)
for any coefficient field F. In particular M is torsion free.

Proof. By the proposition we have Pf (t) � PM (t), that is Pf (t) − PM (t) = (1 + t)Q(t). The first
non-vanishing power of t on the right hand side must occur in Pf (t) as well. But if Q(t) is not
zero, the equation also implies that the next power occurs on the right and hence by the equation
also on the left in Pf (t), which contradicts the assumption. We conclude that Q(t) ≡ 0, that is
Pf (t) = PM (t) as desired.

Definition 1.4.2. If f : M → R is a Morse function such that Pf (t) = PM (t), then f is called a
perfect Morse function. C

The classical strong Morse inequalities

In the topological inequalities, when translating the order relation, we can think of Q(t) as the
Z-error of f . The (1 + t) term on the right is what gives the inequality its power. Indeed, it is
what feeds back information from the critical points of f to the topology of M , as we saw with
the Lacunary principle [Bot88]. As another example we note that the topological inequalities are
actually equivalent to what Milnor calls the Morse inequalities, [Mil68].

Theorem 1.4.1 (Morse Inequalities). If Cλ is the number of critical points of index λ on the
compact manifold M and Bλ(M) is the λ’th Betti number, then

Bλ(M)−Bλ−1(M) +− · · · ±B0(M) ≤ Cλ − Cλ−1 +− · · · ± C0 (1.120)

Proof. From the topological Morse inequalities we know that Pf (t) � PM (t), thus there exists
Q ∈ Z[t, t−1] such that

Pf (t) = PM (t) + (1 + t)Q(t) (1.121)

where Q(t) =
∑
n qnt

n and qn ≥ 0. Now, since we have

(1 + t)
∑
n≥0

(−1)ntn =
∑
n≥0

(−1)ntn +
∑
n≥1

(−1)n−1tn = 1 (1.122)

we conclude that (1 + t)−1 =
∑
n≥0(−1)ntn. We can then rewrite (1.121) as follows:

(1 + t)−1(Pf (t)− PM (t)) = Q(t) that is
∑
n≥0

(−1)ntn(Pf (t)− PM (t)) =
∑
n≥0

qnt
n (1.123)

Therefore we get ∑
n≥0

qnt
n =

∑
λ

∑
i≥0

(−1)iCλtλ+i −
∑
λ

∑
i≥0

(−1)iBλ(M)tλ+i (1.124)

=
∑
n≥0

(
∑
i

(−1)iCn−i −
∑
i

(−1)iBn−i(M))tn (1.125)

and thus
∑
i(−1)iCn−i −

∑
i(−1)iBn−i(M) = qn ≥ 0 or in other words∑

i

(−1)iCn−i ≥
∑
i

(−1)iBn−i(M) for all n ≥ 0 (1.126)

which is equivalent to the required expression (1.120). This completes the proof.
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Applications

We pause for a moment to look at some basic, but intriguing, examples of how Morse theory works
both ways: the homology groups of a manifold impose conditions on the critical points of any Morse
function and, on the other hand, the critical point data of a Morse function sometimes allows us to
compute the (co)homology groups.

If we let f : S2 → R be the height function, we have Pf (t) = t2 +1 and thus by [Morse’s Lacunary
Principle] we see that PS2(t) = t2 + 1, hence we can then read off the homology groups since
Bλ(S2) = dimHλ(S2) which is 1 if λ = 0, 2 and 0 otherwise. In particular, χ(M) = PM (−1) = 2.
The height function from [Figure 1.1.2] had the Morse polynomial Pf (t) = 2t2 +t+1. Since M ' S2

we see that the corresponding Poincaré polynomial is PM (t) = t2 + 1 and thus f is not a perfect
Morse function on M .

From [Example 1.3.1] we have the CW-decomposition e0 ∪ e2 ∪ · · · ∪ e2n thus we immediately
get the Morse polynomial Pf (t) = t2n + · · · + t2 + 1. By [Morse’s Lacunary Principle] we see that
f : CPn → R given by f(z0 : z1 : · · · : zn) =

∑n
i=0 ci|zi|n is a perfect Morse function, and this was

why we could calculate the homology earlier.
Now, let us look at the canonical example in Morse theory, the torus, T 2, embedded vertically in

R3. Since for the torus T 2 we have

Hλ(T 2) =

Z⊕ Z λ = 1
Z λ = 0, 2
0 λ ≥ 3

and thus Bλ(T 2) =

2 λ = 1
1 λ = 0, 2
0 λ ≥ 3

(1.127)

cf. [Hat02, p. 106], we see by the weak Morse inequalities, that any Morse function on T 2 must have
at least four critical points. Note moreover, the height function clearly also gives Pf (t) = t2 + 2t+ 1
hence is perfect.

For any embedding of S1 in R2, the number of local maxima must equal the number of local
minima. Indeed, we have 0 = χ(S1) = PS1(−1) =

∑
λ(−1)λCλ = C0−C1. We have thus successfully

expanded our knowledge of this simple example from the mere fact that there is at least one minima
and one maxima. Relations like these holds through the Morse inequalities for more complicated
examples, although the geometric perturbations naturally gets considerably more challenging to
describe.

Suppose M is a closed, orientable smooth manifold of odd dimension. Then any Morse function
on M has an even number of critical points. Indeed, the number of critical points is Pf (1), and by
[Proposition 1.4.1] there exists Q ∈ Z[t, t−1] with non-negative coefficients such that

Pf (t) = PM (t) + (1 + t)Q(t). (1.128)

Since M is odd dimensional and orientable we have χ(M) = 0, and thus we get

Pf (−1) = PM (−1) = χ(M) = 0 (1.129)

but we also have Pf (1) ≡ Pf (−1) mod 2, thus Pf (1) ∈ 2Z as stated.
Based on these examples, one could imagine that every compact manifold posses a perfect Morse

function. This is not the case however. This is a non-trivial fact, which, as it turns out, also depends
on the coefficient field, [Gue02]. An example of a manifold which allows no perfect Morse functions
is the Poincaré sphere, see [Nic07].
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2 Morse-Bott Theory

Since Morse functions necessarily have isolated critical points, Morse theory immediately disqualifies
many natural functions. The constant function is a trivial example, but there are innumerable other
more interesting ones as well. In the present chapter, we will therefore engage in the quest of
generalizing Morse theory to such cases. Furthermore, since finding a suitable Morse function is
typically the hard part in applying Morse theory, weakening the requirements for such a function
by generalizing the theory is a tremendous aid. This was first developed by Bott in the 1950’s, see
[Bot54], [Bot82].

2.1 Generalizing old acquaintances

In this section, we will introduce the natural generalizations of Morse functions, the set of critical
points, the Morse lemma and the strong Morse principle from chapter 1, following [Nic07]. To see
why one might want this, let’s look at an illuminating example from [Gue02].

Consider the sphere S2 = {(x, y, z) ∈ R3 |x2 + y2 + z2 = 1}. Suppose we instead of the height
function had f : S2 → R given by f(x, y, z) = −z2. Then the critical points are N = (0, 0, 1),
S = (0, 0,−1) and E = {(x, y, z) | z = 0}, that is the north pole, the south pole and the equator
respectively. The first two have index 0, but to see what happens at the equator, we define local
coordinates around (1, 0, 0):

(
√

1− u2 − v2, u, v) 7→ (u, v) (2.1)

Then we have f(u, v) = −v2 and thus f(0, 0) = 0. From the Morse lemma, we see that the lack
of a term ±u2 in this expression that we have degeneracy. The u-direction is the direction of the
equator, and here f is constant, so we are bound to have degeneracy in this direction. However, in
the v-direction, the Morse lemma applies. From the integral curves of −∇f one sees that we could
hope for the following generalized cell decomposition:

S2 ' (N ∪ S) ∪g (E × [ 1
2 ,

1
2 ]) (2.2)

where g : E×{− 1
2 ,

1
2} → N ∪S is an attaching map satisfying g(E×{ 1

2}) = N and g(E×− 1
2 ) = S.

This is indeed the case, as we will see in the course of this section.

2.1.1 Non-degenerate critical manifolds

Since non-degenerate critical points for a Morse function f are isolated by [Corollary 1.1.1], the
set Crf of critical points is a 0-dimensional manifold. What we aim for now is a generalization,
where we consider a function f : M → R whose critical set is a disjoint union

⊔
iNi of connected

submanifolds of dimension di ≥ 0, called critical submanifolds.
We can, by definition cf. [BJ82, p. 33,38] write the restricted tangent bundle of M to he subman-

ifold Ni, that is TM |Ni , as the following whitney sum:

TM |Ni = TNi ⊕ νNi (2.3)

where TNi is the tangent bundle of Ni and νNi is the normal bundle of Ni. If N is k-dimensional
a submanifold of M , then we can find a local coordinate system around q ∈ N ⊂ M such that
xk+1 = 0, . . . , xm = 0, cf. [BJ82, p. 9]. Then, for every q ∈ N and every v ∈ TqN and w ∈ TqM :

Hf,q(v, w) = 0 (2.4)

since the extension Y of w satisfies (Y f)(q) = Yqf = Dq,wf = 0, we see that the Hessian Hf,q

induces a bilinear symmetric form Hf,q on νqN ' TqM/TqN .
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Definition 2.1.1. Let N be a smooth, compact and connected submanifold of M , such that every
point of N is a critical point of f . If for all q ∈ N , the induced Hessian Hq,f is nondegenerate, we
call N a non-degenerate critical manifold of f . C

Equivalently, we could say that N ⊂M is a non-degenerate critical manifold if each point p ∈ N
is critical for f and the Hessian Hf,p is non-degenerate in the normal direction to N . Thus if
(x1, . . . , xm) is a local coordinate system around p such that N is given by the m − k equations
xk+1 = 0, . . . , xm = 0, then

det
( ∂2f

∂xi∂xj

)∣∣∣
p
6= 0 for i, j = k + 1, . . . ,m. (2.5)

This structure furthermore gives us a way of decomposing the normal bundle νN into a positive
and a negative part as follows:

νN = ν+N ⊕ ν−N (2.6)

where ν+N and ν−N are spanned by the positive and negative eigenvectors of the Hessian of f
respectively. Note that these are topological invariants of (N, f).

Definition 2.1.2. The function f is called a Morse-Bott function, if its critical set consists of
non-degenerate critical submanifolds. The dimension of ν−N is called the Morse index of N and is
denoted by λ(N). C

Note that any Morse function is a Morse-Bott function, and a Morse-Bott functions is a Morse
function exactly if each non-degenerate critical submanifold is a point.

2.1.2 The Morse Lemma with coefficients

With the terminology in place for this generalized setting, we can now prove the essential Morse
lemma. Both its statement and proof looks remarkably familiar, though some complications must
be taken care of. Indeed, in the article [BH04], it is the authors aim to fill in the details giving a
complete proof of the Morse-Bott lemma, resting on a proof of the original Morse lemma by Palais,
and Hirsch’s lemma. We will therefore only provide a sketch proof here, and encourage the reader
to consult this paper for more details.

Theorem 2.1.1 (Morse-Bott Lemma). Let f : M → R be a Morse-Bott function, N a connected
component of Cr(f) of dimension k, and p ∈ N . Then there exits an open neighborhood U of p and
a smooth chart φ : U → Rk × Rm−k, where m = dimM , such that

(i) φ(p) = 0

(ii) φ(U ∩N) = {(x, y) ∈ Rk × Rm−k | y = 0}

(iii) f ◦ φ−1(x, y) = f(N)− y2
1 − y2

2 − · · · − y2
λ + y2

λ+1 + · · ·+ ym−k

where λ ≤ m− k is the index of Hf,p and f(N) is the common value of f on N .

Sketch proof. The idea is to just generalize the proof of the original Morse lemma in a natural way.
Let N ⊂ M be a k-dimensional connected submanifold of M . By replacing f with f − c where c
is the common value of f on N , we may assume f(p) = 0 for all p ∈ N . Then we can find a local
coordinate system around p ∈ N ⊂M such that xk+1 = 0, . . . , xm = 0, cf. [BJ82, p. 9]. This gives
(i) and (ii), and we must prove that (iii) holds for this choice of φ. By [Lemma 1.1.2] there exists
smooth functions g1, . . . , gm in a neighborhood of the origin such that

f(x1, . . . , xm) =
m∑
j=1

xjgj(x1, . . . , xm). (2.7)

From the proof of [Lemma 1.1.2] it furthermore follows that

gi(0) =
∫ 1

0

∂f

∂xi
(0) dt =

∂f

∂xi
(0) = 0 (2.8)
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where the last equality follows since p = 0 is assumed to be a critical point, thus by [Lemma
1.1.2] again gj =

∑m
i=1 xihij . Since we have gj(x1, . . . , xm) =

∫ 1

0
∂f
∂xj

(tx1, . . . , txm) dt = 0 and

hij(x1, . . . , xm) =
∫ 1

0
∂gj
∂xi

(tx1, . . . , txm) dt = 0 for j = 1, . . . , k we obtain

f(x1, . . . , xm) =
m∑

j=k+1

xjgj(x1, . . . , xm) =
∑

k+1≤i,j≤m

xixjhij(x1, . . . , xm) = xTAxx (2.9)

where x is the transpose of xT = (xk + 1, . . . , xm) and Ax is the symmetric matrix with entries
aij = 1

2 (hij(x) + hji(x)). By composing the chart φ, chosen above, with a diffeomorphism, ψ, of
Rk × Rm−k fixing the first component, we can assume that the Hessian in the direction normal to
Rk × {0} at (0, 0) ∈ Rm for the expression f ◦ φ−1(x, y), that is( ∂2h

∂yi∂yj

∣∣∣
(0,0)

)
, (2.10)

is a diagonal matrix with the first n diagonal entries equal to −1 and the rest equal to +1. Now,
by assumption that f is a Morse-Bott function, we know that for every x ∈ Rk, the quadratic form

Qx(y) = yT
( ∂2h

∂yi∂yj

∣∣∣
(x,0)

)
y (2.11)

is non-degenerate. The crucial part, resting on [BH04], is that given x ∈ R we can obtain a family of
such diffeomorphisms ψx depending smoothly on x, such that φ̃−1(x, y) = φ−1(ψx(y)) : Rk×Rm−k →
M is a chart where f ◦ φ̃−1(x, y) = h̃x(y). This depends on Hirsch’s lemma and Parlais proof of
the Morse lemma. Now, the rest of the proof follows by induction on the number of terms in the
generalized quadratic form of f , exactly as it was done in the proof of the Morse lemma.

2.1.3 Generalized Morse principle

Recall that, given a vector bundle V → E → B, the unit disc bundle D(E) of E is the fibre bundle
B(0, 1) → D(E) → B, where for each b ∈ B we have D(E)b = p−1(b) = {v ∈ V | ‖v‖ ≤ 1}, where
the norm is with respect to some metric on E. We can now, by arguing exactly as in the proof of
[Theorem 1.3.2], obtain the following generalized version of the strong Morse principle, which says
that the manifold M has the homotopy type of a “cell-bundle complex”.

Theorem 2.1.2 (Bott). Let f : M → R be an exhaustive Morse function. Suppose f−1(c) contains
finitely many critical submanifolds N1, . . . , Nk. For i = 1, . . . , k let D−(Ni) be the closed unit
disc bundle of the negative normal bundle ν−Ni. Then for ε > 0 sufficiently small, we have the
decomposition M c+ε 'M c−ε ∪

∂D−(N1)
D−(N1) . . . ∪

∂D−(Nk)
D−(Nk).

It follows from [Theorem 2.1.2] that in particular, we have an isomorphism of graded homology

H•(M c+ε,M c−ε) =
k⊕
i=1

H•(D−(Ni), ∂D−(Ni)) (2.12)

which we shall exploit to derive an analog of the Morse inequalities for certain, so called orientable,
Morse-Bott functions. This will be the topic of the next section.

2.2 Orientable and completable Morse functions

In this section, we will introduce two properties for Morse-Bott functions; orientability and com-
pletability. The restriction to Morse-Bott functions with these properties ensures that the function
is not too wild for us to be able to obtain the interaction between topology and analysis, we have
seen in the previous chapter. In perticular, we will generalize the Morse inequalities to the setting
of Morse-Bott theory and derive conditions sufficient to recognize perfect Morse-Bott functions.
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2.2.1 Orientability

Recall that if V is a vector space of dimension k ≥ 1 we say that two ordered bases (e1, . . . , ek) and
(ẽ1, . . . , ẽk) are consistently oriented if the transition matrix B defined by ei = Bẽj has positive
determinant. An orientation for V is a equivalence class of ordered bases.

If M is a smooth m-manifold, a pointwise orientation on M is a choice of orientation for each
tangent space TpM for p ∈M . An orientation of M is then a continuous pointwise orientation, and
M is orientable, if there exits an orientation for it, [Lee02, §13]. Alternatively, one could say that
an orientation of M is an orientation of the tangent bundle TM , cf. [BJ82, p. 37]. In particular we
have the following lemma:

Lemma 2.2.1. Every complex vector bundle is orientable as a real vector bundle.

Proof. Suppose V is a complex vector space of complex dimension k with basis {ei}ki=1. Then V
has a canonical orientation as a real vector space of dimension 2k with basis {e1, ie1, . . . , ek, iek}
over R. The orientation determined by this basis is the canonical orientation for V . Now, if {ẽi}kj=1

is another basis for V over C, B is the complex change-of-basis matrix from {ei} to {ẽj} and A is
the real change-of-basis matrix from

{e1, ie1, . . . , ek, iek} to {ẽ1, iẽ1, . . . , ẽk, iẽk} (2.13)

then we have

detA = detB · detB ≥ 0. (2.14)

We conclude that the two bases over R induced by the complex bases for V determine the same
orientation for V , and thus every complex vector bundle is orientable as a real vector bundle.

Thom isomorphism

There is an alternative definition of orientability, which in some cases is superior to the one given
above, in the sense that despite its unpleasant appearance can be easier to apply for complicated
spaces, see [Nic07].

Definition 2.2.1. Let F be a field. Given a real vector bundle p : E → B of rank r over a compact
CW-complex B, we say that E is F-orientable, if there exits a cohomology class

τ ∈ Hr(D(E), ∂D(E); F) (2.15)

such that its restriction to each fiber, (D(E)b, ∂D(E)b), for b ∈ B, defines a generator for the relative
cohomology group Hr(D(E)b, ∂D(E)b; F) . The class τ is called the Thom class of E associated to
the given orientation. C

We need the classical result of the Thom Isomorphism Theorem, which plays a prominent role in
more advanced Morse theory, as discovered by Bott in his proof of the Bott periodicity theorem.

Theorem 2.2.1 (Thom Isomorphism Theorem). If π : E → B of rank r over B is F-orientable,
then for any k > 0, the map

Hk(B,F)→ Hk+r(D(E), ∂D(E); F) given by α 7→ τE ∪ π∗α (2.16)

is an isomorphism, called the Thom isomorphism.

See also [Nic07]. By Poincaré duality, which one can actually also prove through Morse theory cf.
[Mat02], we see that we have an equivalent isomorphism

Hk+r(D(E), ∂D(E); F) ' Hk(X; F). (2.17)

For a proof of the Thom Isomoprhism Theorem, we refer the reader to [MT97, § 21], which also
explains orientations classes for oriented vector bundles thoroughly.

Definition 2.2.2. Let F be a field. A Morse-Bott function f : M → R is called F-orientable if for
every critical submanifold N the negative normal bundle ν−N is F-orientable. C
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2.2.2 Morse-Bott inequalities

We will now generalize the Morse inequalities to the more general setting of Morse-Bott functions,
again inspired by [Nic07]. Unfortunately, we need the Thom isomorphism theorem, thus only the
special class of orientable Morse-Bott functions qualify. First of all, we need to make sense of the
generalized Morse polynomial.

Definition 2.2.3. Let F be a field. The F-Morse-Bott-polynomial of a Morse-Bott function on a
compact manifold M is the polynomial

Pf (t) = Pf (t; F) =
∑
N

tλ(N)PN,F(t) (2.18)

where the summation is over all critical submanifolds of M . C

Note that this coincides with our previous definition of the Morse polynomial. Indeed, if f is a
Morse function, and we have k critical points, then the non-degenerate submanifolds are points and
hence Bλ(N) = dimHλ(N) = 1 if λ = 0 and 0 otherwise. This gives Pf (t) =

∑
p∈Cr(f) t

λ(p)1t0 =∑k
i=1 t

λi which was [Definition 4] as stated.

Corollary 2.2.1 (Morse-Bott inequalities). Suppose f : M → R is an F-orientable Morse-Bott
function on a compact manifold M . Then we have the Morse-Bott inequalities

Pf (t) � PM,F(t) (2.19)

in particular χ(M) =
∑
S(−1)λ(f,S)χ(S).

Proof. Let f : M → R be an F-orientable Morse-Bott function. Choose a0 < a1 < · · · < ak such
that Mai contains precisely i non-degenerate critical submanifolds and Mak = M . Note that this
is possible by [Lemma 1.3.2]. Now, since dim ν−Ni = λ(Ni), we get by (2.17), suppressing the field
F for simplicity:

PD−(Ni),∂D−(Ni)(t) =
∑
k≥0

dimHk(D−(Ni), ∂D−(Ni))tk =
∑
k≥0

dimHk−λ(Ni)(Ni)t
k (2.20)

=
∑
k≥0

dimHk(Ni)tk+λ(Ni) = tλ(Ni)PNi(t) (2.21)

Now, summing over all non-degenerate critical submanifolds of M , we have

Pf (t) =
∑
N

tλ(N)PN (t) =
∑
N

PD−(N),∂D−(N)(t) =
k∑
i=1

PMi,Mk−1(t) � PM (t) (2.22)

where we have used (2.12) and the result
∑k
i=1 PMai ,Mai−1 � PM from the proof of the standard

Morse inequalities. This is the desired result.

2.2.3 Completable Morse functions

As a final restriction on Morse-Bott functions, we will introduce the notion of completability. In
essence, this ensures that the way in which we attach the“cell-bundles” together is nice enough for us
to obtain perfect Morse-Bott functions, and thus extract the homology of the underlying manifold.

Definition 2.2.4. Let f : M → R be a Morse-Bott function on a compact manifold M . If for every
critical value c ∈ R and every critical submanifold N ⊂ f−1(c) the inclusion ∂D−(N) → M c−ε

induces the trivial morphism in homology, then f is called completable. C

Proposition 2.2.1. Let f : M → R be a completable, F-orientable Morse-Bott function on a
compact manifold. Then f is perfect.

Proof. Suppose f : M → R is a Morse-Bott function on the compact, smooth manifold M . Denote
by c1 < · · · < cνthe critical values of M and set

a0 = c1 − 1, aν = cν + 1 and ai =
ci + ci+1

2
, i = 1, . . . , ν − 1 (2.23)
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We denote by Ni ⊂ Cr(f) the set of critical manifolds on the level set {p ∈ M | f(p) = ci}. From
(2.12) and the arguments from the proof of the Topological Morse Inequalities, we have

H•(M i,M i−1) =
⊕
N∈Ni

H•(D−(N), ∂D−(N)) (2.24)

Also, as we have seen before, Hλ(D−(N), ∂D−(N)) = Z while Hλ(D−(N), ∂D−(N)) = 0 for k 6=
λ. The connecting morphism H•(M i,M i−1) ∂→ H•−1(M i−1) is trivial by assumption of f being
completable hence for every 1 ≤ i ≤ ν we obtain the following short exact sequence:

0 // H•(M i−1) // H•(M i) //
⊕

N∈Ni H•(D
−(N), ∂D−(N)) // 0

We conclude that we have

PMi(t) = PMi−1(t) +
∑
N

tλ(N)PN (t) (2.25)

Summing over i = 1, . . . , ν we obtain, since M0 = ∅ and Mν = M :

PM (t) =
ν∑
i=1

∑
N∈Ni

tλ(N)PN (t) = Pf (t) (2.26)

which was the desired result.

Corollary 2.2.2. Suppose f is an orientable Morse-Bott function for which every critical subman-
ifold N we have λ ∈ 2Z and PN (t) is even, then f is perfect, that is Pf (t) = PM (t).

Proof. We will prove the statement by induction on k. By [Proposition 2.2.1] it suffices to prove
that f is completable, or in other words that the inclusion ∂D−(N) → M c−ε induces the trivial
morphism in homology for every critical value c ∈ R. By [Theorem 2.1.2] we have the decomposition

Mk ' D−(N1) ∪ · · · ∪D−(Nk) (2.27)

By assumption Bλ(N1) = Bλ(M1) = 0 if λ is odd. Now suppose this is true for Bλ(Mk−1). We
have the long exact sequence in homology:

. . . // Hλ+1(Mk,Mk−1) // Hλ(Mk−1) // Hλ(Mk) // Hλ(Mk,Mk−1) // Hλ−1(Mk−1) // . . .

from which we deduce that Bλ(Mk) = 0 if λ is odd. Therefore, if λ is even we get the short exact
sequence:

0 // Hλ(Mk−1) // Hλ(Mk) // Hλ(Mk,Mk−1) // 0

We conclude that f is indeed a perfect Morse-Bott function as desired.
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3 Cohomology of Grassmannians

In this section we apply the theory developed in the last couple of sections to investigate the topology
of complex Grassmannians, Grk(C). These spaces are important for a number of reasons. Firstly,
by giving a collection of subspaces of some vector space a smooth structure, we can talk about a
smooth choice of subspaces or open and closed collections of subspaces. Thereby, one can describe
ideas that could not be considered otherwise – or at least describe them more efficiently.

A natural example comes from tangent bundles of smooth manifolds embedded in Euclidean space.
Suppose we have a manifold M of dimension k embedded in Cn. At each point p ∈M , the tangent
space TpM can be considered as a subspace of Cn. The map assigning to p its tangent space thus
defines a map M → Grk(Cn).

Secondly, Grassmannians pop up in many diverse areas of mathematics such as algebraic geometry,
differential geometry and they provide classifying spaces in K-theory. Furthermore, they have found
applications in computer vision, and equilibrium theory in economics.

3.1 Analysis of Grassmannian

Definition 3.1.1. Let V be a finite dimensional vector space. The Grassmann manifold, or Grass-
mannian, Grk(V ), is the space of k-dimensional linear subspaces of V . The complex Grassmannian
is the space Grk(Cn), which we will denote Gk,n for short.

We note, that Gr1(Rn) is just the familiar real projective space RPn and likewise Gr1(Cn) = G1,n

is the complex projective space CPn which we studied earlier. With the Grassmannian, we are now
allowed to look at subspaces of any dimension, and over any arbitrary vector space, thus clearly we
have a huge class of spaces to describe. In order for Morse theory to be of any help in this matter, we
need to know that Grassmannians are actually manifolds. This is, luckily, true, and there are quite
a number of ways to prove this fact, cf. [Lee02]. We will take one of the more unusual approaches,
with the purpose of making it possible for us to define a suitable Morse function on these spaces
later on.

3.1.1 The Grassmannian as a manifold

We need to introduce the terminology of Hermitian vector spaces and some related notation, to set
the stage for the proof of the Grassmannians being manifolds. This section is inspired from [Nic07].

Definition 3.1.2 (Hermitian). A Hermitian metric on a complex vector space W is a positive-
definite Hermitian form on W , that is a function m : W ×W → C such that for all u, v, w ∈W and
a, b ∈ R

h(au+ bv, w) = ah(u,w) + bh(v, w) and h(u, v) = h(v, u) (3.1)

such that for all w ∈ W\{0} we have h(w) > 0. This is also called a positive definite, symmetric
sesquilinear form. We denote h(·, ·) by 〈·, ·〉. A complex vector space W equipped with a Hermitian
metric, (W,h), is called a Hermitian vector space. For every Hermitian vector space W , let L(W )
denote the linear space of Hermitian linear operators T : W → W , that is T is linear and satisfies
〈Tx, y〉 = 〈x, Ty〉. C

Proposition 3.1.1. The complex Grassmannian Gk,n is a complex, compact manifold of complex
dimension k(n− k). Furtheromore, we have a diffeomorphism Gk,n ' Gn−k,n.

Proof. First of all, we need to topologize Grk(Cn). To do this, denote for every U ∈ Grk(Cn) by
PU : Cn → Cn, the orthogonal projection onto U . We give Grk(Cn) the metric topology induced
by the metric

d(U1, U2) = ‖PU1 − PU2‖ (3.2)
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where ‖ · ‖ denotes the operator norm on L(Cn), see [Mun00, § 20], [Fol99]. Note that for any
U1, U2 ∈ Grk(Cn) we have d(U1, U2) = sup{|PU1z − PU2z| : |z| = 1} ≤ 1, thus we can view Grk(C)
as a bounded and closed subset of Cn2

, i.e. it is compact. Since every compact metrizable space is
Hausdorff, we conclude that in particular, Grk(Cn) is compact Hausdorff.

Next, we need to find local coordinates. Suppose, U ∈ Grk(Cn) and S : U → U⊥ is a linear map.
Denote by ΓS ∈ Gk(Cn) the graph of the operator S, that is

ΓS = {(x, y) ∈ U × U⊥ | y = Sx} = {x+ Sx |x ∈ U} ⊂ U ⊕ U⊥ = Cn (3.3)

cf. [Fol99, p. 162]. Then we have the following smooth map

η : Hom(U,U⊥) ↪→ Grk(Cn) given by η(S) = ΓS (3.4)

mapping onto the open subset U ⊂ Grk(Cn) consisting of all k-planes intersecting U⊥ transversally.
Note that since U ' Ck we have Hom(U,U⊥) 'Mk,n−k(C) ' Ck(n−k). Likewise, we claim that we
have a smooth map

κ : Grk(Cn) ↪→Mn(C) ' Cn
2

given by κ(U) = PU (3.5)

and that then η−1 : U → Ck(n−k) defines local coordinates, which we will call graph coordinates, on
Grk(Cn) near U ∈ U . Summarizing we have:

Ck(n−k) ' Hom(U,U⊥)
η // Grk(Cn) κ // Mn(C) ' Cn2

To verify the claim, it suffices to show that κ ◦ η is an embedding. Note first that if we let
S∗ : U⊥ → U denote the adjoint operator, which is well defined due to Cn being a Hilbert space,
then for every S ∈ Hom(U,U⊥) we have

Γ⊥S = {−y + S∗y | y ∈ U⊥} ⊂ U⊥ ⊕ U (3.6)

Indeed, using the fact that S∗y ∈ U and Sx ∈ U⊥, we have 〈x+Sx,−y+S∗y〉 = −〈x, y〉−〈Sx, y〉+
〈x, S∗y〉 + 〈Sx, S∗y〉 = −〈Sx, y〉 + 〈Sx, y〉 = 0. Then we can write η ◦ κ(S) = PΓS in terms of
PU and S. Let v = PUv + PU⊥v ∈ Cn. Then we have PΓSv = x + Sx for x ∈ U if and only if
v − (x− Sx) ∈ Γ⊥S , that is if and only if there exits x ∈ U and y ∈ U⊥ such that{

x+ S∗ = PUv
Sx− y = PU⊥v

(3.7)

If we define the operator S : U ⊕ U⊥ → U ⊕ U⊥ with the block decomposition:

S =
[
1U S∗

S −1U⊥

]
then (3.7) can be written S

[
x
y

]
=
[
PUv
PU⊥v

]
(3.8)

U⊥

U

ΓS

PUv

vPU⊥v

Sx

x

Figure 3.1: Subspaces as graphs of linear operators

Note that we have

S2 =
[

1U + S∗S 1US∗ − S∗1U⊥
S1U − 1U⊥S SS∗ + 1U⊥

]
=
[
1U + S∗S 0

0 SS∗ + 1U⊥

]
(3.9)
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We conclude that S is invertible and has the expression:

S−1 = (S2)−1S =
[
(1U + S∗S)−1 0

0 (SS∗ + 1U⊥)−1

]
·
[
1U S∗

S −1U⊥

]
(3.10)

=
[

(1U + S∗S)−1 (1U + S∗S)−1S∗

(SS∗ + 1U⊥)−1S −(SS∗ + 1U⊥)−1

]
(3.11)

We can thus solve the system (3.8), and obtain the following expression for x:

x = (1U + S∗S)−1PUv + (1U + S∗S)−1S∗PU⊥v. (3.12)

Thus we have PΓSv = (x, Sx) = (1U , S)x, and therefore we see that we finally get the desired result:

PΓS =
[
1U
S

] [
(1U + S∗S)−1 (1U + S∗S)−1S∗

]
(3.13)

=
[

(1U + S∗S)−1 (1U + S∗S)−1S∗

S(1U + S∗S)−1 S(1U + S∗S)−1S∗

]
(3.14)

which is indeed a smooth and injective map. Finally, since rankS(η◦κ) = k(n−k) = dimHom(U,U⊥),
we can write

η ◦ κ : Ck(n−k) → η ◦ κ(Ck(n−k)) ⊂ Cn
2
, (z1, . . . , zk(n−k)) 7→ (z1, . . . , zk(n−k), 0, . . . , 0). (3.15)

Since its differential is then an isomorphism, we conclude by [BJ82, Inverse function theorem] that
we have a diffeomorphism. Finally, we conclude by [BJ82, Theorem 5.7] that η ◦ κ is indeed an
embedding as desired.

The last claim, that we have a diffeomorphism Gk,n → Gn−k,n, follows easily by letting it be
the map which associates to each k-dimensional subspace its orthogonal complement with respect
to a fixed Hermitian metric on the ambient space. Indeed, it is its own inverse and smooth. This
completes the proof.

3.1.2 Morse functions on Grassmannians

Now that we have a smooth, compact manifold at our disposal, we are in a position to apply the
derived Morse theory from the last couple of chapters. We aim to find a Morse-Bott function on
Grk(C), allowing us to prove the following proposition:

Proposition 3.1.2. For every 1 ≤ k ≤ n the Poincaré polynomial Pk,n(t) is even, that is the odd
Betti numbers of Gk,n are trivial. Moreover

Pk,n+1(t) = Pk,n(t) + t2(n+1−k)Pk−1,n(t) (3.16)

We will now engage in the, rather lengthy, quest of finding a suitable Morse function, exploiting
the construction from the last section, following [Nic07]. Luckily, however, once we have found a
suitable Morse function, the derived theory ends the proof.

Lemma 3.1.1. Let W be a complex Hermitian vector space. The map

Ω : Grk(W )→ L(W ), defined by Ω(U) = PU (3.17)

where PU is the orthogonal projection on U , is a smooth embedding.

Proof. The map κ from the previous lemma, applied to the space W , will do the job.

We can obtain real-valued functions on Grk(Cn) by taking “height functions” with respect to this
embedding. The next lemma shows that there is a particularly nice one such function.

Lemma 3.1.2. Let V be a complex n-dimensional vector space equipped with a Hermitian metric.
The function f : Grk(W )→ R defined by

f(U) = Re tr(PCPU ) (3.18)

where PC : C⊕V → C⊕V is the orthogonal projection onto C, is an orientable Morse-Bott function.
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Proof. Let us define W = C⊕V . Then W is a Hermitian vector space, since we can obtain a metric
by taking the direct sum of the metrics on V and C. Then the map g : L(C ⊕ V ) → R defined by
g(T ) = Re tr(PCT ) is a well defined, smooth function. Composing g with the smooth embedding
U 7→ PU from [Lemma 3.1.1] we obtain f , which is then a well defined smooth function. Note that
we can write1

f(U) = 〈PUe0, e0〉. (3.19)

V

C

U

e0f(U)

Figure 3.2: The map f : Grk(W )→ R given by f(U) = 〈PUe0, e0〉

Indeed, note that if we let u1, . . . uk be an orthonormal basis for U and denote the i’th coordinate
of vector uα by uα(i), then we have

PU =
[
u1 . . . uk

] [
u1 . . . uk

]T =
[ k∑
α=1

uα(i)uα(j)
]

1≤i,j≤n
(3.20)

PC = e0e
T
0 = [βi,j ]1≤i,j≤n where βi,j = 1 for i, j = n and 0 otherwise (3.21)

PCPU =

 0 . . . 0
...

...∑n
α=1 uα(n)uα(1) . . .

∑n
α=1 uα(n)uα(n)

 (3.22)

This finally gives us the stated identity:

Re tr(PCPU ) = Re
n∑
α=1

uα(n)uα(n) = 〈PUe0, e0〉 (3.23)

By [Definition 2.1.1,2.1.2] we must prove that its set of critical points consists of a disjoint union of
non-degenerate critical manifolds. We start by proving the following three properties:

(i) f satisfies 0 ≤ f ≤ 1, ∀U ∈ Grk(W ) and f−1(0) = Grk(V ), f−1(1) = Grk−1(V )

Proof of (i). Let U ∈ W be a k-dimensional linear subspace. Then since ‖PU‖ = 1, being an
orthogonal projection, we have ‖PUe0‖ ≤ 1 in particular 0 ≤ 〈PUe0, e0〉 ≤ 〈e0, e0〉 = 1.

Since f(U) = 〈PUe0, e0〉 = 0 if and only if PUe0 = 0, that is if and only if e0 ∈ U⊥ we conclude
that U ⊂ e⊥0 = V . Therefore L ∈ Grk(V ). For the other pre-image, note that we have a natural
embedding Grk−1(V ) → Grk(W ) defined by U 7→ Ce0 ⊕ U . Now, f(U) = 〈PUe0, e0〉 = 1 if
and only if PUe0 = e0, that is e0 ∈ U thus U ∈ Grk−1(V ) by the embedding.

(ii) The only critical values of f are 0 and 1.

Proof of (ii). Since 0 and 1 are extremal values of f , these are critical values. To see that these
are the only ones, let U ∈ Grk(W ) be given such that 0 < f(U) < 1. We wish to show that
then U is a regular point of f . From the condition 0 < f(U) < 1 it follows, that U intersects
the hyperplane V ⊂W transversally along a k − 1-dimensional linear subspace U ′ ⊂ U .

1This is also equivalent to cos ∠(e0, U), see [Nic07].
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Pick an orthonormal basis e1, . . . , ek−1 for U ′. We can extend this to an orthonormal basis
e1, . . . , ek−1, . . . , en for all of V . Then we have

U = U ′ + Cv where v = c0e0 +
∑
j≥k

cjej , and |c0|2 +
∑
j≥k

|cj |2 = 1 (3.24)

and thus 〈PUe0, e0〉 = 〈|u0|2e0 +
∑
j≥k |cj |2e0, e0〉 = |c0|2 by orthogonality. Now, choosing

v(t) = a0(t)e0 +
∑
j≥k

aj(t)ej , where |a0(t)|2 +
∑
j≥k

|aj(t)|2 = 1 (3.25)

where a0, aj : R → C are smooth functions satisfying d
dt |a0(t)|2|t=0 6= 0 and a0(0) = c0 we

obtain a smooth path

γ : I → Gk(W ) given by γ(t) = Ut = U ′ + Cv(t) (3.26)

where d
dtf(Ut)|t=0 = d

dt (PUte0, e0)|t=0 = d
dt |a0(t)|2|t=0 6= 0. Therefore U0 = U is a regular

point of f as desired. We conclude that 0 and 1 are indeed the only critical values.

(iii) The level sets Si = f−1(i), i = 0, 1 are non-degenerate critical manifolds.

Proof of (iii). Since S0 = Grk(V ) by (i), it is a complex submanifold of Grk(W ) of complex
dimension k(n − k), cf. [Proposition 3.1.1]. Similarly S1 = Grk−1(V ) is a submanifold of
complex dimension (k − 1)(n− k + 1). Therefore, their complex codimensions are

codimC(S0) = dimGrk(W )− dimGrk(V ) = k(n+ 1− k)− k(n− k) = k

codimC(S1) = dimGrk(W )− dimGrk(V ) = k(n+ 1− k)− (k − 1)(n− k + 1) = n− k + 1

To prove that S0 is a non-degenerate critical manifold, it suffices to prove that for every
U ∈ S0 = Grk(V ) ⊂ W there exists a smooth map Φ : Ck → Grk(W ) which is an immersion
at 0 such that furthermore

Φ(0) = U, and f ◦ Φ(0) is a non-degenerate minimum (3.27)

For v ∈ V let Xv : W →W be the skew-Hermitian linear operator defined by

Xv(e0) = v, Xv(w) = −〈w, v〉eo ∀w ∈W (3.28)

Then for a, b ∈ R we have Xv(aw1 + bw2) = −〈aw1 + bw2, v〉e0 = −a〈w1, v〉e0 − b〈w2, v〉e0 =
aXv(w1)+bXv(w2), and Xtv = −〈w, tv〉e0 = −t〈w, v〉e0 = tXv, thus the map v 7→ Xv ∈ L(W )
is R-linear. Furthermore, we can form the related linear operator etXv : W →W . Now we set

Φ(v) = eXvU and P (v) = PΦ(v) (3.29)

and observe that then we have2

P (v) = eXvPUe
−Xv and (3.30)

Ṗv =
dP (tv)
dt

|t=0 =
d

dt
(etXvPUe−tXv )|t=0 (3.31)

= (Xve
tXvPUe

−tXv + etXvPU (−Xv)e−tXv )|t=0 = XvPU − PUXv = [Xv, PU ] (3.32)

This, in turn, gives us the following, if v ∈ U :

〈Ṗve0, v〉 = 〈XvPUe0 − PUXve0, v〉 = −〈PUXve0, v〉 = −〈v, v〉 = −|v|2 (3.33)

since we have e0 ∈ U⊥ and thus PUe0 = 0. We conclude that if Ṗv = 0 then so is v. This
proves that the map

Φ : Ck ⊃ U → Grk(W ) (3.34)

2The first identity follows by straightforward computations using the definitions and that eXv =
P∞

n=0
Xn
v

n!
.
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is an immersion at v = 0. To see that f ◦Φ(0) is a non-degenerate minimum, we first compute
this composition:

f(Φ(v)) = 〈PΦ(v)e0, e0〉 = 〈P (v)e0, e0〉 = 〈eXvPUe−Xve0, e0〉 = 〈PUe−Xve0, e
−Xve0〉 (3.35)

= 〈PU (1−Xv +
1
2
X2
u + . . . )e0, (1−Xv +

1
2
X2
v + . . . )e0〉 (3.36)

= 〈PUe0 − PUXve0 + PU
1
2
X2
ue0 + . . . , e0 −Xve0 +

1
2
X2
ve0 + . . . 〉 (3.37)

= 〈PUXve0, Xve0〉+ · · · = |v|2 + . . . (3.38)

where we again use that Xve0 = v, PUv = v and PUe0 = 0. Since we then have f(Φ(tv)) =
〈PUXtve0, Xtve0〉+ · · · = t2〈PUXve0, Xve0〉+ · · · = t2|v|2 + . . . where all the later terms have
t to a higher degree, we conclude that

d2f(Φ(tv))
dt2

|t=0 = 2|v|2 (3.39)

thus 0 ∈ U is a non-degenerate minimum of f ◦Φ : U → R. Furthermore, since dimC U = k =
codimC(S0), we infer that S0 is indeed a non-degenerate critical manifold as required.

The proof of S1 being a non-degenerate critical manifold is similar. Let U ∈ S1 = Grk−1(V )
be given and denote by U ′ the orthogonal complement of U in V . Then we have

dimC U
′ = n− (k − 1) = n− k + 1 = codimCS1 (3.40)

As before, we aim to show that the smooth map

Φ : C ⊃ U ′ → Gk(W ), Φ(v) = eXvU (3.41)

is an immersion at 0 ∈ U ′ and that the composition f ◦ Φ has a non-degenerate maximum at
0. Again we have P (u) = PΦ(v) and thus Ṗv = dP (tv)

dt |t=0 = [Xv, PU ] which gives:

〈Ṗve0, v〉 = 〈XvPUe0 − PUXve0, v〉 = 〈v − PUv, v〉 = |v|2 (3.42)

since v ∈ U ′. Thus Φ is an immersion at v = 0 by the same argument as before. We also have

f(Φ(v)) = 〈PUe−Xve0, e
−Xve0〉 = 〈PU (1−Xv +

1
2
X2
v + . . . )e0, (1−Xv +

1
2
X2
v + . . . )e0〉

= 〈PUe0 − PUXve0 + PU
1
2
X2
ve0 + . . . , e0 −Xve0 +

1
2
X2
ve0 + . . . 〉 (3.43)

= 〈e0 +
1
2
X2
ve0 + . . . , e0 − v +

1
2
X2
ve0 − . . . 〉 (3.44)

= |e0|2 +
1
2
〈X2

ve0, e0〉+
1
2
〈e0, X

2
ve0〉+ · · · = 1− 〈Xve0, Xve0〉+ . . . (3.45)

= 1− |v|2 + . . . (3.46)

Therefore we have d2f(Φ(tv))
dt2 |t=0 = 1 − 2|v|2 and from the same arguments as before, we

conclude that S1 is a non-degenerate critical manifold as desired.

Now, by [Morse-Bott lemma], the negative normal bundles are ν−N0 = 0 and ν−N1 = νN1 thus

λ(N0) = 0, λ(N1) = 2(n− k + 1) (3.47)

Furthermore, since in particular ν−Ni is a complex vector bundle for i = 0, 1, it is orientable, cf.
[Lemma 2.2.1]. We conclude that f is an orientable Morse-Bott function as desired.

Although this proof is a bit more cumbersome than one could have hoped for, this example should
make the reader thankful for the time we spent on developing the more potent Morse-Bott theory.
We are now finally ready to prove the desired [Proposition 3.1.2] stated above.
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Proof of Proposition 3.1.2. We carry out a strong induction on ω = k + n. For ω = 2, that is
(k, n) = (1, 1), we have P1,1(t) = 1 which is then even. Furthermore, P0,1(t) = 1 thus we get:

P1,2(t) =
∑
λ

Bλ(G1,2)tλ = 1 + t2 = P1,1(t) + t2P0,1(t) (3.48)

where we have used [Example 1.3.1] to conclude that B0(G1,2) = B2(G1,2) = 1 since G1,2 = CP 2.
Thereby, the induction start is verified.

Assume that the induction hypothesis holds for ω = k + n, we must prove that it holds for
ω = k + n + 1. From the proof of [Lemma 3.1.2] we have N0 ' Gk,n and N1 ' Gk−1,n, which by
the induction hypothesis then have corresponding even Poincaré polynomials PNi(t). By [Corollary
2.2.2], we conclude that f is, in fact, a perfect Morse-Bott function. The induction hypothesis also
tells us that all Poincaré polynomials Pk,n(t) with k + n ≤ ω are even. By [Lemma 3.1.2], the map
f : Grk(W )→ R is a perfect Morse-Bott function, thus by definition we have

Pk,n+1(t) = Pf (t) = PN0(t) + t2(n−k+1)PN1(t) = Pk,n(t) + t2(n−k+1)Pk−1,n(t) (3.49)

which is then even as well. The desired result now follows by the principle of simple mathematical
induction.

Corollary 3.1.1. The Poincaré polynomial of the complex Grassmannian, Gk,n, is

Pk,n(t) =
∏n
i=1(1− t2i)∏k

j=1(1− t2j)
∏n−k
i=1 (1− t2i)

(3.50)

Proof. From [Proposition 3.1.2] we have the equation Pk,n+1(t) = Pk,n(t) + t2(n+1−k)Pk−1,n(t). If
we make a change in variables, putting Qk,l = Pk,n where l = n− k, we can write this equation as

Qk,l+1(t) = Qk,n−k+1(t) = Qk,l(t) + t2(n+1−k)Qk−1,n−(k−1)(t) (3.51)

= Qk,l(t) + t2(l+1)Qk−1,l+1(t)

Note that we have Ql,k = Pl,2k = Pn−k,2k = P2k−n+k,2k = P3k−n,2k = Pk,n = Qk,l, where we
have used the diffeomorphism from [Proposition 3.1.1] and the relation Qk,l = Pk,n with l = n− k.
Therefore, we also have, when inserting in (3.51):

Qk,l+1(t) = Ql+1,k(t) = Ql+1,k−1 + t2kQl,k(t) = Qk−1,l+1 + t2kQk,l(t) (3.52)

Comparing (3.51) and (3.52) gives us the equation

(1− t2k)Qk,l(t) = (1− t2(l+1))Qk−1,l+1(t) that is Qk,l(t) =
(1− t2(l+1))

(1− t2k)
Qk−1,l+1(t)

Changing back the variables gives us the relation

Pk,n(t) =
(1− t2(n−k+1))

(1− t2k)
Pk−1,n(t) (3.53)

We see that by iterating this procedure, for Pk−1,n, Pk−2,n . . . P1,n we obtain

Pk,n(t) =
(1− t2(n−k+1))

(1− t2k)
(1− t2(n−k+2))
(1− t2(k−1))

. . .
(1− t2n)
(1− t2)

=
∏n
i=n−k+1(1− t2i)∏k

i=1(1− t2i)
(3.54)

which we can also write as

Pk,n(t) =
∏n
i=1(1− t2i)∏k

i=1(1− t2i)
∏n−k
i=1 (1− t2i)

(3.55)

thus obtaining the desired expression.

Example 3.1.1. As an example of the efficiency of this result, let us re-discover the homology of
CPn = Gr1(Cn) = G1,n. By [Corollary 3.1.1] we obtain

P1,n =
∏n
i=1(1− t2i)

(1− t2)
∏n−1
i=1 (1− t2i)

=
1− t2n

1− t2
= 1 + t2 + t4 + · · ·+ t2(n−1) (3.56)

We see directly from this that CPn can be given a CW-complex structure consisting of one cell of
each even dimension. By cellular homology, it follows that Hi(CPn) = Z for i even and Hi(CPn) = 0
for i odd.
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3.2 Further developments

We have now exhausted just about all we can say about the topology of complex Grassmannians
with our rather näıve approach taken above. It is however possible to obtain more information, for
the price of introducing the Schubert calculus, the Plücker embedding and analyzing the integral
curves of −∇f for a perfect Morse-Bott function f , which one can actually calculate explicitly in
this case, to obtain information about the stable and unstable manifolds, see [Gue02]. This is,
however, outside the scope of this project, and we will therefore desist from becoming absorbed in
this. Instead, we give a brief discussion on where one could go from here.

3.2.1 A route to cohomology

We would like to determine the cohomology of complex Grassmannians, and not just the homology
groups. However, it is known that in general, the classical Morse inequalities only give information
about the additive structure of the cohomology ring. Nevertheless, it is actually, in this special case,
possible to determine the cohomology ring H∗(Grk(C); Z), which has the form

Z[c1, . . . , cn−k, d1, . . . , dk]
(1 + c1 + · · ·+ cn−k)(1 + d1 + · · ·+ dk) = 1

(3.57)

for c1, di ∈ H2i(Grk(Cn); Z), by considering the stable and unstable manifolds for a certain Morse
function on Grk(Cn), see [Gue02].

One would of course like to know whether it is possible to determine the cohomology of any
compact manifold M . This is related to the question of how the flow lines on a given manifold
can be configured. Indeed, just as we have seen that the torus T 2 does not allow a Morse function
with only three critical points, it is not possible to have arbitrary configurations of flow lines going
between the critical points. Therefore, one has to study exactly how these are constrained, and it
will be necessary to consider, not just one, but multiple Morse functions on a given manifold. This
has in turn led to yet another generalization of Morse theory, from the 90’s onwards, in which one
can keep the complex Grassmannians in mind as a typical example, cf. [Gue02].
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