
Math 4250 Minihomework: Understanding Quadratic Surfaces.

Definition. We say that xp11 · · · xpnn is a monomial in x1, . . . , xn with degree k if p1+· · ·+pn = k. A
linear combination of monomials is called a polynomial in x1, . . . , xn of degree k if the monomials
have maximum degree k. If ~x = (x1, . . . , xn) we will also use the phrases “monomial of degree k
in ~x” and “polynomial of degree k in ~x”.

Definition. A paraboloid is the graph of a quadratica polynomial p : Rn → R.

From the multivariable Taylor theorem, we know that every functionb is locally approximated by
a quadratic polynomial called its Taylor expansion around the point ~x0:

f(~x0 + ~x) ' f(~x0) + 〈~x,∇f(~x0)〉+
1

2
〈~x,Hf( ~x0)~x〉 (♠)

Therefore, the graph of every functionc is locally approximated by a paraboloid. For that reason,
we devote this minihomework to getting a feel for the geometry of paraboloids.

1. (15 points) Suppose p(~x) is a quadratic polynomial. We can always write p(~x) in the formd

p(~x) =
∑

1≤i≤n

aii x
2
i +

∑
1≤i<j≤n

2aijxixj +
∑

1≤i≤n

bi xi + c. (F)

In this problem, we’ll define a vector~b ∈ Rn and a symmetric n× n matrix A by

~b = (b1, . . . , bn) and Aij =

{
aij, if i ≤ j

aji, if i > j.
(♦)

(1) (5 points) Prove that

p(~x) = 〈~x,A~x〉+
〈
~b, ~x
〉
+ c =

∑
ij

Aijxixj +
∑
i

bixi + c.

aQuadratic means “degree 2” in the sense of the definition above of degree for polynomials in several variables.
bTechnically, this is only true for smooth enough functions. But we’re not trying to be precise yet.
cAnd we will soon see that every surface is locally such a graph!
dBe careful to note the inequalities on the indices in the sum. For a two variable polynomial, this form evaluates to

p(x1, x2) = a11x
2
1 + a22x

2
2 + 2a12x1x2 + b1x1 + b2x2 + c.
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(2) (5 points) Now show that ∇p(~x) = 2A~x +~b and Hp(~x) = 2A (for all ~x). It’s helpful to
compute the general first and second partials ∂

∂xk
p(~x) and ∂2

∂xl∂xk
p(~x) to get oriented.
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(3) (5 points) Using the first two parts of the problem, prove that the quadratic Taylor ap-
proximation of p(~x) around ~x0 = 0 is equal to p(~x) itself.e

eThis is a general fact about polynomials– they are their own Taylor approximations.
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2. (20 points) In linear algebra, we learned

Definition. An orthonormal basis for Rn is a collection of vectors ~v1, . . . , ~vn ∈ Rn with

〈~vi, ~vj〉 =

{
1, if i = j (the vectors are “normal”ized)
0, if i 6= j (the vectors are “ortho”gonal).

This is also written as 〈~vi, ~vj〉 = δij where δij is the Kronecker delta.f

As you might guess from the names, there’s a tight connection between orthonormal bases and
orthogonal matrices:

Proposition. The vectors ~v1, . . . , ~vn form an orthonormal basis for Rn ⇐⇒ the matrix V
with columns ~v1, . . . , ~vn is an orthogonal matrix.

Suppose we change our basis for Rn between the standard basis ~ei and the new basis ~vi, and

x1~e1 + · · ·+ xn~en = u1~v1 + · · ·+ un~vn,

are two different ways to write the same vector (in the two different bases). If ~x = (x1, . . . , xn)
and ~u = (u1, . . . , un), then

~x = V ~u and ~u = V T~x (♥)

Therefore, to rewrite a function f(x1, . . . , xn) as a function g(u1, . . . , un), we define

g(~u) = f(~x) = f(V ~u). (?)

You are now going to prove two theorems about the relationship between g(~u) and f(~x) as-
suming both (♥) and (?). Although we generally discourage writing everything in coordinates,
this is a case where it’s helpful to do so, remembering the formulas for matrix-vector and
matrix-matrix multiplication:

(A~x)i =
∑
j

Aijxj and (AB)ij =
∑
k

AikBkj

f That is δii = 1 and δij = 0 if i 6= j.
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(1) (10 points) Use (?) to prove that

∇g(~u) =


∂g
∂u1

(~u)
...

∂g
∂un

(~u)

 = V T


∂f
∂x1

(~x)
...

∂f
∂xn

(~x)

 = V T ∇f(~x)

by proving that∇g(~u)i = ∂
∂ui
g(~u) = (V T∇f(~x))i for all i.
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(2) (10 points) Now prove that

Hg(~u) =
[

∂2g
∂ui∂uj

(~u)
]
= V T

[
∂2f

∂xi∂xj
(~x)
]
V = V T Hf(~x)V

by proving that (Hg(~u))ji = ∂2

∂uj∂ui
g(~u) = (V T Hf(~x)V )ji for all j, i ∈ 1, . . . , n using

the result of the last problem that ∂
∂ui
g(~u) = (V T∇f(~x))i for all i ∈ 1, . . . , n.
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3. (20 points) Recall that we gave in the notes:

Theorem (Spectral Theorem). If A is a real, symmetric n× n matrix then there exists a real,
orthonormal basis ~u1, . . . , ~un for Rn and real numbers λ1, . . . , λn so that A~ui = λi~ui for each
i ∈ 1, . . . , n.
We claimed that this means “every symmetric matrix can be diagonalized”. We’re now going
to explore exactly how this works in practice.

(1) (5 points) Suppose that A is an n × n symmetric matrix, and v is an orthogonal matrix
whose columns ~v1, . . . , ~vn are orthonormal eigenvectors ofAwith eigenvalues λ1, . . . , λn.
Prove that V TAV is a diagonal matrix where (V TAV )ii = λi by proving that the vectors
~e1, . . . , ~en are eigenvectors of V TAV with eigenvalues λ1, . . . , λn.
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(2) (5 points) We also showed in the notes:
Proposition. The eigenvalues of A are the roots of the polynomial det(A− λI).
Find the eigenvalues of the symmetric 2× 2 matrix (in terms of the aij)

A =

[
a11 a12
a12 a22

]
.

and prove that the eigenvalues λ1 and λ2 are always real numbers if the aij are real.
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(3) (5 points) In the case of 2× 2 matrices, finding eigenvectors from eigenvalues is simple.
Suppose we have

A− λ1I =

[
a11 − λ1 a12
a12 a22 − λ1

]
.

We know that det(A− λ1I) = 0, so there is some ~w1 6= ~0 which solves the linear system
(A− λ1I)~w1 = ~0. From this, we can construct

~v1 =
~w1

‖~w1‖
and ~v2 = ~v⊥1 .

Use this procedure to find ~v1 and ~v2 (as functions of the λi and the aij).
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(4) (5 points) Now we’ll do an example. Use your work about to find eigenvalues λ1 and λ2
and corresponding orthonormal eigenvectors ~v1 and ~v2 for the symmetric matrix

A =

[
2 1
1 2

]
and construct the matrix V with columns ~v1 and ~v2. Then check directly that

V TAV =

[
λ1 0
0 λ2

]
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4. (20 points) Assembling the pieces above, we now have a useful technique for simplifying
quadratic polynomials in two variables. Much like completing the square, it’s a way to change
coordinates which can reduce any polynomial to a simpler form. Here is the plan:

• Given a polynomial p(~x) = a11x
2
1+2a12x1x2+a22x

2
2+ b1x1+ b2x2+ c, form the matrix

A = 2Hp(~x) =
[
a11 a12
a12 a22

]
and find the orthogonal matrix V with columns given by the eigenvectors ~v1 and ~v2 of A.

• Make the change of variables ~x = V ~u.

• Observe that the new polynomial p(~u) has a diagonal Hessian. Since the Hessian is twice
the coefficient matrix A, we should be able to write

p(~u) = λ1u
2
1 + λ2u

2
2 + b′1u1 + b′2u2 + c

We are now going to do all of these steps in a specific example.

(1) (5 points) Form the coefficient matrix A for the quadratic polynomial

p(~x) = 2x21 + 2x1x2 + 2x22 + 4x1 + 3x2 + 5

and write down the eigenvalues and eigenvectors of this matrix, using them to construct
the matrix V .
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(2) (5 points) Make the change of variables ~x = V ~u and rewrite p(~x) as a new quadratic
polynomial p(~u) in the new variables u1 and u2.
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(3) (5 points) Check that p(~u) is in the form

p(~u) = λ1u
2
1 + λ2u

2
2 + b′1u1 + b′2u2 + c

and verify that~b′ = V T~b.
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5. (10 points)

Definition. A paraboloid with quadratic polynomial p(~x) is called an elliptic paraboloid if all
the eigenvalues ofHp are nonzero and have the same sign. If all of the eigenvalues ofHp are
equal, we call this an elliptic paraboloid of revolution.

By choosing appropriate coordinatesh for R2, every elliptic paraboloid p(~x) : R2 → R can be
written in the form

p(~x) =
λ1
2
x21 +

λ2
2
x22 + c

where λ1, λ2 are the eigenvalues of Hp and λ1λ2 > 0. The surface curves up or down in both
directions, as shown below.

z = 1
5
x21 +

1
2
x22 z = −1

5
x21 − 1

2
x22 z = −1

5
x21 − 1

5
x22

We are now going to prove that an elliptic paraboloid of revolution has the property that rays
parallel to the z-axis reflected from the surface of the paraboloid meet at a single point on the
z-axis, as shown below left.

Paraboloids of this type are called “parabolic dishes” and are using to concentrate sound waves,
radio waves, and light, particularly in solar energy applications, such as the solar furnace
shown above right.

You should go about the proof in two steps.

hTo be precise, the coordinate directions are the eigenvectors forHp and the origin of our “appropriate” coordinate
system is chosen to be the (unique) point where∇p = ~0.
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(1) (5 points) Start by writing the function p(~x) = λ1
2
x21 +

λ2
2
x22 + c in polar coordinates

(r, θ), using the fact that λ1 = λ2. Use the new equation to prove that the intersection of
the paraboloid with any plane θ = θ0 is a parabola coordinates, as shown below, and find
the equation of that parabola.
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(2) (15 points) You may assume that rays in the plane θ = θ0 remain in that plane after
reflectioni as shown below left. This means that you can reduce the question to the planar
problem shown below right.

You may also assume that the angles that the incoming and outgoing rays make with the
normal vector to the parabola (shown in yellow above right) are equal.j

Prove that all the outgoing rays meet at a single point on the z-axis and give coordinates
for this point in terms of the eigenvalues λ1 = λ2.

iThis is true only because the elliptic paraboloid of revolution is rotationally symmetric.
jThis is the law of reflection.
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6. (10 points)

Definition. A paraboloid p(~x) is called a hyperbolic paraboloid if the eigenvalues of Hp are
nonzero and do not all have the same sign.

As before, in appropriate coordinates for R2, we can write p(~x) : R2 → R in the form

p(~x) =
λ1
2
x21 +

λ2
2
x22 + c

where λ1, λ2 are the eigenvalues of Hp and λ1λ2 < 0. The surface curves up in one direction
and down in the other, as shown below.

The hyperbolic paraboloid has the surprising property that it is composed of two families of
straight lines, as shown below:

We are now going to prove this and find equations for the lines. Since the projection of a
line in space to the x-y plane is a line in the plane, the projections of the lines making up the
hyperboloid must form two families of parallel lines in the plane, as below.
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(1) (7 points) Prove that there are exactly two slopes ±m for lines in the plane so that the
intersection of the vertical plane through any line with slope ±m and the hyperboloid is
a straight line, as shown below.

You must find the slopes ±m explicitly in terms of λ1 and λ2.
Hint: Remember that every line in the x-y plane can be written in the form y = mx + b.
When is the space curve formed by the intersection of the hyperboloid with the vertical
plane through y = mx+ b a straight line?
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(2) (3 points) Now write the two equations for the parametrized lines ~α(x) which pass above
(0, b), and simplify them as much as you can.
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7. (20 points) (Extra Credit) You proved in question 5 that parallel rays of light striking a per-
fectly reflective and perfectly shaped paraboloid should converge at a single point on the axis
of revolution.l

Construct or obtain a concave dish which is as close to being an elliptic paraboloid of revolu-
tion you can. Line it with something reflective. Rays of sunlight arriving on Earth are almost
parallel, your shape is (hopefully!) pretty close to being a true elliptic paraboloid of revolu-
tion, and the reflective material is close to being a perfect reflector. All of these things mean
that light rays striking your dish may converge to nearly the same point on the axis.

Test how well your construction collects sunlight by (for instance) measuring the temperature
at the focus of the paraboloid and comparing this to the air temperature around the dish. If
your dish focuses light effectively, the temperature will be higher at the focus. Can you collect
enough sunlight to melt a chocolate bar? Boil water? Toast a marshmallow? Submit a written
description of your construction process and photographs of you with your construction and
the temperature difference you measure.

Construction notes: It is often possible to obtain old satellite dishes (for example, from the
Dish network) very cheaply. Check Craigslist or Facebook marketplace. Other construction
options include cardboard, paper, and lining a shallow dish with modeling clay and shaping it
with a template. Aluminum foil is a good reflective material.

Important safety notes: This experiment can work well enough to product a lot of heat. Be
very careful (you’re legal adults; please act accordingly). Do NOT make a paraboloid much
larger than a pie plate. (Large satellite dishes covered in a good reflective material can be quite
dangerous.) Keep your hands and hair well away from the focus of your dish, and wear oven
mitts. Measure temperatures with a long thermometer. Do not boil water in a sealed container.
Toast marshmallows on a stick.

lVery reasonably, this is called the focus of the paraboloid.
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8. (20 points) (Extra Credit) Construct your own hyperbolic paraboloid using two sets of straight
rods, as in the video posted above this homework.m Submit photographs of you with your
construction and a description of your method.

mBamboo cooking skewers joined by hot glue or wires work well for this, as do 1/4 inch dowels from a home
improvement center. Pencils can work, but require a little more care in assembly and make a very flat hyperbolic
paraboloid– they are really too thick and short to be very convenient.
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