
Math 4250 Minihomework: The gradient and the hessian

In this minihomework, we are going to reintroduce the gradient and the Hessian matrix from
multivariable calculus, and pair them with some ideas from linear algebra. In order to do this,
we’re going to introduce a (possibly) new idea: the difference between the maximum (or max) of
a function and the arguments of the maxima (or argmax) of the function.

Definition. If f : X → R, and S ⊂ X is a set of inputs to f , we define

max
S

f(x) := the unique value f(x0) so that x0 ∈ S and f(x0) ≥ f(x) for all x ∈ S.

We define
argmax

S
f(x) := the set {x0 ∈ S s.t. f(x0) = max

S
f(x)}.

The distinction between argmax and max is much like the distinction between critical points
of a function f : R → R, which are x’s (or inputs), and critical values of a function f : R → R
which are y’s (or outputs). Argmax is a core operation in machine learning, and it’s a standard
library function in the software libraries numpy and tensorflow.

We note that maxS f(x) may not exista, but it is unique if it exists. If maxS f(x) exists, then
argmaxS f(x) is nonempty. In general, there is no reason to believe that a nonempty argmaxS f(x)
contains only a single point.b

1. (20 points) Suppose we have a function f : Rn → R. Recall that

Definition. The gradient vector∇f(~x) := ( ∂f
∂x1

(~x) · · · ∂f
∂xn

(~x))T , and the directional derivative

(D~vf)(~x) := lim
h→0

f(~x+ h~v)− f(~x)
h

.

It’s a theorem we prove in multivariable calculus that

D~vf(~x) = 〈~v,∇f(~x)〉 (F)

Use (F) and the fact that 〈~x, ~y〉 = ‖~x‖‖~y‖ cos θ (where θ is the angle between ~x and ~y) to
prove the following two facts:

aFor instance max(0,1) x
2 is undefined, because x2 comes arbitrarily close to 1 on this open interval, but never

reaches it.
bUnless we have some additional hypothesis about the function! For example, we learned in first-year calculus that

if f : R → R and f ′′(x) < 0, then there is exactly one point where f(x) is maximized and so argmaxR f(x) exists
and contains only one point.



(1) (10 points) “The norm of the gradient is the largest rate of ascent of the function f”, or

max
{~v s.t. ‖~v‖=1}

D~vf(~x) = ‖∇f(~x)‖

Solution:
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(2) (10 points) “The gradient points in the direction of steepest ascent”, or

argmax
{~v s.t. ‖~v‖=1}

D~vf(~x) =

{
∇f(~x)
‖∇f(~x)‖

}
Note: You must show both that ∇f(~x)

‖∇f(~x)‖ ∈ argmax{~v s.t. ‖~v‖=1}D~vf(~x) and that no other
~v ∈ argmax{~v s.t. ‖~v‖=1}D~vf(~x).

Solution:
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2. (10 points) Suppose that f : Rn → R. Recall thatHf is the symmetric n× n Hessian matrix
of f defined (at each point ~x) by

(Hf(~x))ij =
∂2f

∂xi∂xj
(~x)

and that for any symmetric n× n matrix A, QA(~v, ~w) =
∑

ij Aij~vi ~wj .

Assuming (F), prove that
D~w(D~vf(~x)) = QHf (~w,~v) (♣)

Hint: We can express the right-hand side of (♣) as a double sum. Can you express the left
hand side of (♣) as a double sum as well?

Solution:
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3. (20 points) We learned a form of Taylor’s theorem in Calculus II; for a smooth enough func-
tion f(x) near a point a, we have

f(a+ x) ' f(a) + f ′(a)x+
1

2
f ′′(a)x2

and the quadratic polynomial in x on the right-hand side is the “best”c quadratic approximation
to f(x) near a. In general, we have

Theorem (Multivariable Taylor’s Theorem). If f : Rn → R is a C3 function near ~a, we have

f(~a+ ~x) ' f(~a) + (D~xf)(~a) +
1

2
((D~x(D~xf))(~a)

' f(~a) + 〈~x, (∇f)(~a)〉+ 1

2
〈~x,Hf(~a)~x〉

and the quadratic polynomial in ~x on the right hand side is the “best” quadratic approximation
to f(x) near ~a.

(1) (10 points) The pictures below show a plot of the function f(x, y) = cos x cos y and the
best quadratic approximation p(x, y) of f(x, y) near (0, 0):

Use the multivariable Taylor theorem to find the function p(x, y), which should be a
quadratic polynomial in x and y.

Solution:

cFor the moment, we’re not going to get into the question of what it means to be the best approximation. Suffice it
to say that (at one point), you learned theorems about the remainder term in Taylor’s theorem.
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Solution:
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(2) (10 points) The pictures below show a plot of the function f(x, y) = sin(xy) and the
best quadratic approximation p(x, y) of f(x, y) near (0, 0):

Use the multivariable Taylor theorem to find the function p(x, y), which should be a
quadratic polynomial in x and y.

Solution:
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