
Math 4250 Minihomework: Curvature and Torsion Theorems

Definition. If A ∈ SO(n) and ~v ∈ Rn, we say that the map ~x 7→ A~x + ~v is a rigid motion. The
rigid motions form a group called the special Euclidean group SE(n).

Rigid motions preserve angles, lengths, and handedness.

Definition. We say that parametrized curves ~α : R → Rn and ~β : R → Rn are congruent if ~α(t)
and ~β(t) are related by a rigid motion. That is, ~α(t) and ~β(t) are congruent iff there exists some
A ∈ SO(n) and ~v ∈ Rn so that ~β(t) = A~α(t) + ~v for all t.

Theorem (Fundamental Theorem of Curve Theory). Two space curves ~α : R→ R3 and ~β : R→
R3 with nonzero curvature are congruent if and only if the curvature κα(t) = κβ(t) and torsion
τα(t) = τβ(t) for all t.

This theorem implies that we can identify congruent curves by comparing curvatures and torsions.
For example, the two curves below are based on the geometry of the backbone of the protein
1ppt (avian pancreatic polypeptide). Though they may not look the same, graphing their curvature
(blue) and torsion (orange) reveals that they are actually congruent.

We are now going to prove the fundamental theorem together by completing a set of problems.
We’ll need to recall some ideas from the “Tale of Two Matrices” video lecture:

Definition. An n×n matrix A is orthogonal if AAT = In. In this case, we say that A is a member
of the orthogonal group O(n). Every orthogonal matrix has detA = ±1. If A is orthogonal and
detA = +1, we say that A is a member of the special orthogonal group SO(n).

Proposition. If A ∈ SO(3), then A is a rotation around some axis.



1. (8 points) You proved in the “Getting Comfortable again with Linear Algebra” homework that
O(n) is a groupa: that is,

Proposition. If A and B are orthogonal matrices, then AB is an orthogonal matrix. If A is
an orthogonal matrix, then A−1 is an orthogonal matrix.

Assuming that O(n) is a group (or equivalently that the proposition directly above is true), you
will now show that SO(n) is a subgroup of O(n).b There are two things that you must prove:

(1) (4 points) Show that if A and B are in SO(n), then AB is also in SO(n).

(2) (4 points) Show that if A is in SO(n) then A−1 is also in SO(n).

aIn fact, it’s a subgroup of the group GL(n) of n× n invertible matrices.
bIn fact, SO(n) is both a subgroup of O(n) and of the group SL(n) of n × n invertible matrices with positive

determinant (which is itself a subgroup of GL(n)).
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2. (25 points) Recall from the notes that we claimed

Theorem. If ~α : R → R3 is an arclength-parametrized curve framed by F : R → SO(3),
A ∈ SO(3), and ~v ∈ R3, then ~β(s) = A~α(s) + ~v is an arclength-parametrized curve framed
by AF : R→ SO(3).

You are now going to prove this theorem.

(1) (5 points) We start by proving a new versionc of the product rule. Suppose that A : R→
Matn×k(R)d and B : R→ Matk×m(R) are matrix-valued functions. Prove that

d

dt
A(t) ·B(t) = A′(t) ·B(t) + A(t) ·B′(t)

where · is matrix multiplication. Be sure to clearly indicate where you use the ordinary
product rule d

dt
f(t)g(t) = f ′(t)g(t) + f(t)g′(t). Hint: Look up the definition of matrix

multiplication and prove the formula entry-by-entry.

cSo far, we have proved two different versions of the product rule for vector-valued functions ~α : R → Rn and
~β : R → Rn: We have d

dt

〈
~α(t), ~β(t)

〉
=
〈
~α′(t), ~β(t)

〉
+
〈
~α(t), ~β′(t)

〉
. Further, if n = 3, then we have d

dt~α(t) ×
~β(t) = ~α′(t)× ~β(t) + ~α(t)× ~β′(t). You can expect that the proof of this product rule is pretty much the same.

dThis is the space of n× k matrices with real entries.
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(2) (5 points) Suppose that A : R→ Matn×m(R) and B : R→ Matn×m(R). Prove that

d

dt
(A(t) +B(t)) = A′(t) +B′(t)

Hint: As before, refer to the definition of matrix addition and prove the formula entry-by-
entry.
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(3) (5 points) Suppose that ~α(s) is a unit speed curve, A ∈ SO(3) and ~v ∈ R3, and let
~β(s) = A~α(s) + ~v. Prove that ~β′(s) = A~α′(s) (2.1 and 2.2 will help) and then prove that
~β(s) is also a unit speed curve. You’ll need to use the fact that A is an orthogonal matrix.
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(4) (10 points) Prove that if F (s) is a framinge of the unit-speed curve ~α(s), A ∈ SO(3) and
~v ∈ R3, then AF (s)f is a framing of the unit-speed curve ~β(s) = A~α(s) + ~v.
Hint: You must show that A · F (s) ∈ SO(3) for all s and that the first column of AF (s)
is the tangent vector T β(s) to ~β(s). The previous questions will help; remember that
matrix-vector multiplication is the special case of matrix multiplication where the second
matrix is a column vector.

eRecall from the notes that
Definition. A framing of ~α : R→ R3 is a map F : R→ SO(3) so that

F (s) =

 ↑ ↑ ↑
T (s) F1(s) F2(s)
↓ ↓ ↓


where T (s) = ~α′(s).

f The matrix product of A and F (s).
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3. (25 points) Recall our propositiong

Proposition. If F : R→ SO(3) is a framing of ~α(s), then

F ′(s) = F (s)S(s)

where S(s) is skew-symmetric.h

Suppose that ~α(s) is a unit-speed curve framed by F : R → SO(3), A ∈ SO(3) and ~v ∈ R3.
Let ~β(s) = A~α(s) + ~v. In the last problem, you proved that ~β(s) is a unit-speed curve framed
by AF : R→ SO(3). Therefore, there are skew-symmetric matrices Sα(s) and Sβ(s) so that

F ′(s) = F (s)Sα(s)
(AF )′(s) = (AF )(s)Sβ(s)

(1) (10 points) Prove that Sα(s) = Sβ(s).

gFrom the notes on Framings, page 5.
hThat is, S(s)T = −S(s).
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(2) (10 points) We start by recalling a few facts:
Definition. The Frenet frame for a unit-speed curve ~α(s) is given by

T (s) = ~α′(s), N(s) =
~α′′(s)

‖~α′′(s)‖
, B(s) = T (s)×N(s).

The usual form of the Frenet equations is

T ′(s)
N ′(s)
B′(s)

=
+κ(s)N(s)

−κ(s)T (s) +τ(s)B(s)
−τ(s)N(s)

The Frenet equations can also be written as the matrix equation (note the signs!)

F ′(s) =

 ↑ ↑ ↑
T ′(s) N ′(s) B′(s)
↓ ↓ ↓


=

 ↑ ↑ ↑
T (s) N(s) B(s)
↓ ↓ ↓

 0 −κ(s) 0
κ(s) 0 −τ(s)
0 τ(s) 0

 = F ′(s)S(s).

Suppose that F : R→ SO(3) is a framing of a unit speed curve ~α(s).
Prove that F is the Frenet frame ⇐⇒ we have F ′(s) = F (s)S(s) for a skew-symmetric
matrix S(s) with S(s)21 > 0, S(s)32 > 0, and S(s)13 = −S(s)31 = 0.
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(3) (5 points) Using the two previous parts of this question and the matrix form of the Frenet
equations, show that if ~α(s) is a unit-speed curve, A ∈ SO(3) and ~v ∈ R3, and ~β(s) =
A~α(s) + ~v, then ~α(s) and ~β(s) have the same curvature κα(s) = κβ(s) and torsion
τα(s) = τβ(s) at each s.
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4. (15 points) Suppose that ~α(s) and ~β(s) are arclength-parametrized curves with nonvanishing
curvature, with Frenet frames Tα(s), Nα(s), Bα(s) and Tβ(s), Nβ(s), Bβ(s). Suppose that

Tα(0) = Tβ(0), Nα(0) = Nβ(0), and Bα(0) = Bβ(0)

and that ~α(0) = ~β(0). Further, suppose that the curvature κα(s) = κβ(s) and torsion τα(s) =
τβ(s) are equal for all s.

(1) (10 points) Prove that

Tα(s) = Tβ(s), Nα(s) = Nβ(s), and Bα(s) = Bβ(s) (F)

for all s. Here is a strategy to follow. First, consider the function

f(s) = ‖Tα(s)− Tβ(s)‖2 + ‖Nα(s)−Nβ(s)‖2 + ‖Bα(s)−Bβ(s)‖2

Notice that equation (F) holds if and only if f(s) = 0 for all s. Prove that f(s) = 0 for
all s by proving that f(0) = 0 and f ′(s) = 0 for all s.
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(2) (5 points) You have just proved (in particular) that ~α′(s) = Tα(s) = T β(s) = ~β′(s) for
all s. Use this and the fact that ~α(0) = ~β(0) to show that ~α(s) = ~β(s) for all s.
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5. Suppose that we have a curve ~α(s) which lies on the unit sphere, as below:

It seems reasonable that such a curve should have some restriction on its curvature and torsion.

(1) (10 points) Suppose that ~α(s) lies on a sphere of radius R centered at the origin. Prove
that κ(s) 6= 0 and either (τ(s) = 0 and κ(s) is constant) or

τ(s) 6= 0 and
τ(s)

κ(s)
+

d

ds

(
1

τ(s)
· d
ds

1

κ(s)

)
= 0.

Without loss of generality, you may assume that ~α(s) is unit-speed.
Hint: Because T (s), N(s), B(s) is an orthonormal basis for R3, you can always write

~α(s) = 〈~α(s), T (s)〉T (s) + 〈~α(s), N(s)〉N(s) + 〈~α(s), B(s)〉B(s)

Start with the equation R2 = 〈~α(s), ~α(s)〉 and keep differentiating and simplifying both
sidesi until you can write 〈~α(s), T (s)〉, 〈~α(s), N(s)〉, and 〈~α(s), B(s)〉 in terms of κ(s)
and τ(s). Then differentiate one more time.

iUse the Frenet equations and the fact that ~α′(s) = T (s) as needed.
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(2) (10 points) Suppose that

κ(s) 6= 0 and
τ(s)

κ(s)
+

d

ds

(
1

τ(s)
· d
ds

1

κ(s)

)
= 0. (F)

Prove that ~α(s) lies on the surface of somej sphere.
Hint: The really hard part in this question is determining where the sphere is centered.
A savvy guess would be to define

C(s) = ~α(s)− a(s)T (s)− b(s)N(s)− c(s)B(s)

where a(s), b(s) and c(s) are expressed in terms of κ(s) and τ(s) by the formulae from
the previous part. In general, we expect C(s) to be some weird new space curve.
Show that if (F) holds, then C ′(s) = 0 and ‖~α(s) − C‖ is constant, so ~α(s) lies on a
sphere centered at C.

jThe sphere does not have to be centered at the origin!
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