Math/Csci 4690/6690: Computations with the graph Laplacian, isomorphisms, drawings

In this minihomework, you'll get some practice using computational tools to work with small graphs. Here are edge lists for three graphs, each with 10 vertices $\{1, \ldots, 10\}$ and 23 edges:

$$G_1 = \{1 \leftarrow 3, 1 \leftarrow 5, 1 \leftarrow 9, 2 \leftarrow 3, 2 \leftarrow 4, 2 \leftarrow 5, 2 \leftarrow 6, 2 \leftarrow 10, 3 \leftarrow 4, 3 \leftarrow 6, 3 \leftarrow 10, 4 \leftarrow 6, 4 \leftarrow 8, 4 \leftarrow 9, 4 \leftarrow 10, 5 \leftarrow 6, 5 \leftarrow 9, 6 \leftarrow 7, 6 \leftarrow 8, 6 \leftarrow 9, 7 \leftarrow 9, 8 \leftarrow 9, 8 \leftarrow 10\}$$

$$G_2 = \{1 \leftrightarrow 2, 1 \leftrightarrow 3, 1 \leftrightarrow 4, 1 \leftrightarrow 5, 2 \leftrightarrow 3, 2 \leftrightarrow 6, 2 \leftrightarrow 10, 3 \leftrightarrow 4, 3 \leftrightarrow 5, 3 \leftrightarrow 6, 3 \leftrightarrow 7, 3 \leftrightarrow 8, 3 \leftrightarrow 9, 4 \leftrightarrow 7, 4 \leftrightarrow 8, 5 \leftrightarrow 6, 5 \leftrightarrow 7, 6 \leftrightarrow 7, 6 \leftrightarrow 8, 6 \leftrightarrow 9, 6 \leftrightarrow 10, 8 \leftrightarrow 10, 9 \leftrightarrow 10\}$$

$$G_3 = \{5 \leftarrow 3, 5 \leftarrow 6, 5 \leftarrow 2, 4 \leftarrow 3, 4 \leftarrow 7, 4 \leftarrow 6, 4 \leftarrow 9, 4 \leftarrow 8, 3 \leftarrow 7, 3 \leftarrow 9, 3 \leftarrow 8, 7 \leftarrow 9, 7 \leftarrow 10, 7 \leftarrow 2, 7 \leftarrow 8, 6 \leftarrow 9, 6 \leftarrow 2, 9 \leftarrow 1, 9 \leftarrow 10, 9 \leftarrow 2, 1 \leftarrow 2, 10 \leftarrow 2, 10 \leftarrow 8\}$$

Recall that in the notes, we gave

Definition. Given two graphs G and G', a map $f: \{v_1, \ldots, v_{\mathbf{v}}\} \to \{v'_1, \ldots, v'_{\mathbf{v}'}\}$ is an isomorphism between graphs if

- 1. f is a bijection between the vertices of G and the vertices of G',
- 2. the map $v_i \leftrightarrow v_j \rightarrow f(v_i) \leftrightarrow f(v_j)$ is a bijection between the edges of G and the edges of G'.

Notice that if the two graph have different numbers of vertices or edges, they cannot be isomorphic. Further, any bijection f is equivalent to a permutation π of the indices of the vertices: there must exist some π so that $f(v_i) = v'_{\pi(i)}$.

Some of these problems require a modest amount of computation. I've added some optional links on the course webpage to helpful functions if you'd like to do these in Python (in which case I recommend the iGraph python bindings) or if you'd like to do these in Mathematica. You're welcome to use other languages as well.

(10 points) that	Show that	if G and G'			exists some	permutation	on matrix Π so	
			$L_G = 1$	$\Pi L_{G'}\Pi^T$				
Use the lasues).	Use the last homework to conclude that L_G and $L_{G'}$ have the same spectrum (set of es).							

(10 points) Find the graph Laplacian for each of the three graphs above. In each case, this should be a symmetric 10×10 matrix with 23 (-1) entries in the upper triangle, 23 (-1) entries in the lower triangle, and 10 nonzero entries on the main diagonal.

3.	(10 points) Use your favorite computer program or website to find the eigenvalues (the spectrum) of each of the graph Laplacian matrices you found in 2, and provide a list of the eigenvalues.
	Use the result of 1 to decide whether it may be possible to find an isomorphism between G_1 and G_2 , or between G_2 and G_3 , or between G_1 and G_3 , and write down your decision and a description of your reasoning.
	Be sure to clearly distinguish between cases where the existence of an isomorphism is ruled out, cases where the existence of an isomorphism is guaranteed, and cases where the existence of an isomorphism is unknown.

same for corphism unique can see if and (1) (5 point	responding ver ely unless two other eigenvect s) Use your fa	tices in a pair components or tells you w vorite comput	r of isomorphi of the eigenve that to do with ter program or	to graphs. This ector are the sa those!).	the eigenvector are to determines an isome (in which case, you the eigenvectors of anythis)
for any	pair of graphs v	which you con	ncluded above	might be isom	orphic.

rdinates. ¹			

¹Note that these are the second and third *smallest* eigenvalues, and that eigenvectors may be given in a different order depending on your computational system.