
Math 4500/6500 Homework: Root Finding

This homework assignment covers our notes on solving equations. You are welcome to look at
the code from the Mathematica notebooks, but when the problems say “write a piece of code to”
they mean “write your own code from scratch”, not “modify the code in the notebook” or “find a
piece of code on the web”.

1. (Warmup Bisection Proof) Write out a proof that if f(a)f(b) < 0 and f(c) 6= 0, then either
(f(a)f(c) < 0 and f(b)f(c) > 0) or (f(a)f(c) > 0 and f(b)f(c) < 0).

2. (Bisection Proof) Suppose that c0, c1, . . . , cn are the approximations produced by the bisection
method to the solution r of the equation f(x) = 0 on an interval [a0, b0]. Prove that

|r − cn| ≤
b0 − a0
2n+1

.

3. (Newton Proof) Suppose that f(x) = (x − t∗)(x − t∗∗) where t∗∗ > t∗ > 0. Consider the
iterates x0, x1, . . . , xk, . . . for Newton’s method with starting point x0 = 0.

a. Prove that the iterates xk form an increasing sequence, converging to t∗.

b. Prove that the difference t∗ − xk <= C(t∗ − xk−1)2 for some fixed C > 0.

c. Find a explicit constant C that works in the equation above.

4. (FindRoot) Mathematica has a built-in function called FindRoot which can be used to solve
equations in the form f(x) = 0.

a. Use FindRoot function to find a nonzero solution to the equation

6(ex − x) = 6 + 3x2 + 2x3

starting from x = 2.0 or x = 3.0 which is within 10−8 of the true solution. Use the Preci-
sionGoal option to specify the allowable error in the solution.

b. Use the EvaluationMonitor option and Sow and Reap to collect a list of trial solutions
{x0, . . . , xn} evaluated by FindRoot (see the documentation page for FindRoot for an ex-
ample).

5. (The Bisection Method) Refer to the notes to refresh your memory of the bisection method for
finding a root of f(x) on an interval [a, b] assuming that f(a)f(b) < 0.

a. Write your own code to implement the bisection method in Mathematica for a general func-
tion f(x) and endpoints a and b. Your function must:

(1) be called (lastname)Bisection[f,a,b,ε],
(2) run the bisection method for an arbitrary function f(x) on an interval [a, b],
(3) produce an error message and stop if f(a) and f(b) have the same sign,
(4) terminate when the size of the current interval [an, bn] is less than ε
(5) return a list in the form {{an, bn}, an+bn

2
}.
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b. Use your code to find a numerical solution of the equation

6(ex − x) = 6 + 3x2 + 2x3.

starting with the interval [2.0, 3.0] with absolute error less than 10−8.

c. Compare your result to the result obtained from FindRoot in Problem 4.

6. (The False Position Method) The false position method is an alternative to the bisection method
for solving the equation f(x) = 0 on an interval [a, b] which works as follows. Given an interval
[a, b] and a continuous function f(x) on the interval where f(a)f(b) < 0 (that is, f(a) and f(b)
have different signs), construct a “false position” c for the point x∗ ∈ [a, b] by taking the point
where the line joining (a, f(a)) and (b, f(b)) crosses the x-axis. The false position method then
shrinks the interval to [a, c] (if f(a)f(c) < 0) or [c, b] (if f(c)f(b) < 0) and starts again, as in
the bisection method. Unlike the bisection method, the false position method is guaranteed to
move one end of the interval close to a root, but stops changing other end.

a. Write your own code to implement the false position method in Mathematica. Your function
must:

(1) be called (lastname)FalsePosition[f,a,b,ε],
(2) run the false position method for an arbitrary function f(x) on an interval [a, b],
(3) produce an error message and stop if f(a) and f(b) have the same sign,
(4) terminate when |an − an−1| and |bn − bn−1| are both less than ε
(5) return a list in the form {{a0, b0, c0}, . . . , {an, bn, cn}} where ck is the false position

computed at the k-th step.
Note: If you’re using NestWhileList to iterate, you’ll be a little bit puzzled about how to
write a test function which knows about both [an, bn] and [an−1, bn−1]. One solution to the
puzzle is in the documentation– the test function can get several iterates (or all the results so
far) with optional arguments to NestWhileList.

b. Use your code to find a numerical solution of the equation

6(ex − x) = 6 + 3x2 + 2x3.

starting with the interval [2.0, 3.0] with absolute error less than 10−8. Compare your result to
the result obtained from FindRoot in Problem 4 and from the Bisection Method in Problem 5.

7. (Newton’s Method in 1-d) Recall (or look up) the definition of Newton’s method for scalar
functions f(x).

a. Write your own Mathematica code to implement Newton’s method given the function and
its derivative. Your function must:

(1) be called (lastname)Newton[f,df,x0,n],
(2) run Newton’s method for n steps for a function f(x) with derivative df(x) from the

starting point x0,
(3) return a list in the form {{x0, f(x0)}, ..., {xn, f(xn)}},
(4) produce an error message and stop if df(xk) = 0 at any step k.
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b. Use your code to find a numerical solution of the equation

6(ex − x) = 6 + 3x2 + 2x3.

in the interval [2.0, 3.0] from a starting point of your choice. Compare your result to the
result obtained from FindRoot in Problem 4, from the False Position method of Problem 6,
and from the Bisection Method of Problem 5.

8. (Compare and Contrast) You now have four different algorithms for finding roots implemented:
the Bisection Method, the False Position Method, Newton’s Method and FindRoot.

a. Test them at finding solutions of tanx + tanhx = 0 and x2 − 22x + 3 = 0 from several
starting points and intervals, and write up your results, including tables of the intermediate
values produced by each algorithm.

b. Decide which method works best for each problem and justify your choice.

1. CHALLENGE PROBLEMS

1. (Relative Bisection) Devise a modified bisection algorithm which guarantees that the result has
relative error less than ε. Implement your method in Mathematica.

2. (Symbolic Differentiation) Write a Mathematica function which uses Mathematica to compute
the derivative of the input function f(x) for Newton’s method. Your function must:
(1) be called (lastname)NewtonDiff[f,x0,n].
(2) use Mathematica to compute df(x),
(3) run Newton’s method for n steps for a function f(x) with derivative df(x) from the starting

point x0.
(4) return a list in the form {{x0, f(x0)}, ..., {xn, f(xn)}}.
(5) produce an error message and stop if df(xk) = 0 at any step k.

This will require some noodling around with documentation in order to get it to work as you
expect it to.

3. (Steffensen’s Method) The Steffensen method is sometimes used in place of Newton’s method
when the derivative of f(x) is known to exist, but it cannot be easily calculated. The Steffensen
method has the iteration

xn+1 = xn −
f(xn)

g(xn)
where g(x) =

f(x+ f(x))− f(x)
f(x)

.

(1) Implement the Steffensen method in Mathematica.
(2) Find solutions of the equation f(x) = (x − 1)8 using both Newton’s method and the

Steffensen method.
(3) Prove that when f(x) is small, g(x) is close to f ′(x) using Taylor series.
(4) Prove that the Steffensen method is quadratically convergent.

4. (Newton-Kantorovich) Suppose that you are given a function f(x), its derivative df(x), its
second derivative ddf(x).
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a. Use the Newton-Kantorovich theorem to find an estimated upper bound on the distance from
the current iterate xk to the nearby solution t∗ when the NK conditions hold. You’ll have to
assume that the current value of ddf(x) (or a multiple of it to be on the safe side) is an upper
bound for all values of ddf(x) nearby, but this usually isn’t too far off.

b. Write a modified Newton’s method code in Mathematica using this bound. Your function
must

(1) be called (lastname)NewtonNK[f,df,ddf,x0,ε].
(2) run Newton’s method for a function f(x) with derivative df(x) from x0.
(3) decide whether the Newton-Kantorovich conditions hold at each step, and compute an

estimated upper bound uk > |xk − x∗| if they do,
(4) terminate when uk < ε,
(5) return a list in the form

{x0, f(x0), df(x0), ddf(x0), u0},
. . .

{xn, f(xn), df(xn), ddf(xn), un}
where uk is the upper bound above if the Newton-Kantorovich conditions hold and∞
if they don’t,

(6) produce an error message and stop if df(xk) = 0 at any step k.

c. Test your method at finding solutions with error < 10−8 to the problems tanx+ tanhx = 0
and x2 − 22x+ 3 = 0.

5. (Iterative Division) Prove that for any R > 0 there is an interval of x0 values around 1/R so
that the limit of the iteration

xn+1 = xn(2− xnR)
is 1/R. This iteration was actually used to implement the division operation on some old
computers which had circuitry for multiplication but not division!
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