
Math 4250/6250 Homework #6

This homework assignment covers our notes on the meaning of the second fundamental form
(13), computations with the second fundamental form in local coordinates (14), and extracting
geometric information from the second fundamental form (15). Please pick 4 of the following
problems, including problem 3 of the regular problems. Remember that undergraduate students
should average one challenge problem per assignment, while graduate students should average two
challenge problems per assignment.

1. REGULAR PROBLEMS

1. Find the asymptotic curves and lines of curvature of the surface X(u, v) = (u, v, uv).

2. Consider Enneper’s surface

X(u, v) =

(
u− u3

3
+ uv2, v − v3

3
+ vu2, u2 − v2

)
.

Show that
(1) The first fundamental form is given by

E = G = (1 + u2 + v2)2, F = 0.

(2) The second fundamental form is given by

e = 2, g = −2, f = 0.

(3) The principal curvatures are

k1 =
2

(1 + u2 + v2)2
, k2 = − 2

(1 + u2 + v2)2
.

(4) Compute the Gauss and Mean curvature of this surface.

3. Suppose that we are given a surface of revolution

X(u, v) = (φ(v) cosu, φ(v) sinu, ψ(v))

so that the profile curve α(v) = (φ(v), 0, ψ(v)) is parametrized by arclength (that is (φ′)2 +
(ψ′)2 = 1). We want to solve for ψ(v) and φ(v) so that the surface has constant Gauss curva-
ture K.
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(1) Show that φ(v) and ψ(v) satisfy the equations

φ′′(v) +Kφ(v) = 0, ψ(v) =

∫ √
1− (φ′)2 dv.

(2) Suppose that K = 1. Show that if we assume that ψ′(0) = 0 then the solutions of the
equations above are

φ(v) = C cos v, ψ(v) =

∫ v

0

√
1− C2 sin2 t dt.

Here C = φ(0) is some constant. Notice that ψ(v) is not defined for all v– we can only
integrate where 1− C2 sin2 t is positive. First, find the domain of ψ(v) (depending on C).
Sketch the profile curve α(s) = (φ(v), 0, ψ(v)) for C < 1, C = 1, and C > 1 and the
resulting surface of revolution (you can use Wolfram Alpha to make plots if you don’t have
Mathematica). Next, show that only the C = 1 surface can be reflected over the xy plane
to make a compact regular surface.

(3) Now consider the case K = −1. Show that either

φ(v) = C cosh v, ψ(v) =

∫ v

0

√
1− C2 sinh2 t dt.

or

φ(v) = C sinh v, ψ(v) =

∫ v

0

√
1− C2 cosh2 t dt.

or

φ(v) = ev, ψ(v) =

∫ v

0

√
1− e2t dt.

In each case, determine the range of v values for which ψ(v) makes sense and sketch the
resulting surface. Again, you can use Wolfram Alpha to make plots if you want to.

(4) Last, consider the case K = 0. Prove that the only solutions are the cylinder, the cone, and
the plane.

2. CHALLENGE PROBLEMS

1. Let h : S → R be a differentiable function on a surface S and let p ∈ S be a critical point of h.
Let ~w ∈ TpS and let α : (−ε, ε)→ S be a curve in S with α(0) = p and α′(0) = ~w. We define

Hph(~w) =
d2

dt2
h(α(t))

∣∣∣∣
t=0

Then
(1) Let x be a parametrization of S with X(0, 0) = p. Show that

Hph(u
′ ~xu + v′ ~xv) = huu(p)(u

′)2 + 2huvu
′v′ + hvv(p)(v

′)2.

Prove that Hph : TpS → R is a quadratic form on TpS which does not depend on our
choice of α. (This will depend on the fact that p is a critical point of h.) This quadratic
form is called the Hessian of h at p.
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(2) Let h : S → R be the height function of S relative to TpS. That is, if ~n is the normal vector
to S at p,

h(~q) = 〈~q − ~p, ~n〉 .
Check that p is a critical point of h with h(~p) = 0, and so that Hph is well defined. Now
prove that if ~w ∈ TpS and |~w| = 1 then

Hph(~w) = the normal curvature of S at p in the direction ~w.

(3) Conclude that the Hessian of the height function relative to TpS is the second fundamental
form of S at p.

2. A critical point p ∈ S of a differentiable function h : S → R is nondegenerate if the matrix
Ap associated to the quadratic form Hph is nonsingular (that is, each eigenvalue of the matrix
is positive or negative, and there are no zero eigenvalues). A differentiable function h on S for
which every critical point is nondegenerate is called a Morse function. The point of this exercise
is to show that Morse functions are “common” on surfaces in the sense that the distance function
from S to almost every point ~r ∈ R3 is a Morse function. Given ~r, we let

h~r(~q) =
√
〈~q − ~r, ~q − ~r〉.

We now show that this is a Morse function for almost every ~r.
(1) Show that ~p ∈ S is a critical point for h~r if and only if the line ~p~r is normal to S at ~p.
(2) Suppose that ~p is a critical point for h~r. Given a direction ~w ∈ TpS with |~w| = 1, prove

that
Hph~r(~w) =

1

h~r(p)
− IIp(~w).

where IIp is the second fundamental form of S.
(3) Prove that if ~e1 and ~e2 are the principal directions for S at p then ~e1 and ~e2 are eigenvectors

for Ap.
(4) Suppose k1 and k2 are the principal curvatures of S at p. Prove that p is a degenerate critical

point of h~r if and only if either

h~r(p) =
1

k1

or h~r(p) =
1

k2

(5) Now show the set of ~r ∈ R for which h~r is a Morse function is open and dense in R3.

3. A surface S ⊂ R3 is locally convex at a point ~p ∈ S if there exists a neighborhood V of ~p in S
so that V is contained in one of the closed half-spaces determined by T~pS. If V has only ~p in
common with T~pS then we say that S is strictly locally convex at ~p.
(1) Prove that if the principal curvatures of S are nonzero and have the same sign at ~p (and

hence the Gauss curvature K > 0), then S is strictly locally convex at ~p.
(2) Prove that if S is locally convex at ~p then the principal curvatures of S do not have different

signs (so K ≥ 0).
(3) In fact, K ≥ 0 does not imply local convexity! To see this, consider the surface

X(u, v) = (u, v, u3(1 + v2)).

Prove that the Gauss curvature of X is nonnegative on U = {(u, v) ∈ R2|v2 < 1/2}, but
that S is not locally convex at (0, 0).
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