Math 4250/6250 Homework #5

This homework assignment covers our notes on the Gauss map (11), the meaning of the Gauss map (12) and the second fundamental form (13). Please pick 4 of the following problems. Remember that undergraduate students should average **one** challenge problem per assignment, while graduate students should average **two** challenge problems per assignment.

1. REGULAR PROBLEMS

- 1. Show that at a hyperbolic point on a regular surface S, the principal directions bisect the asymptotic directions.
- 2. Let $\alpha(s)$ be a regular curve on a surface S. Suppose that at the point $\alpha(s)$, the surface S has Gaussian curvature K > 0 and principal curvatures k_1 and k_2 . Show that the curvature $\kappa(s)$ of α at this point satisfies

$$\kappa(s) \ge \min(|k_1|, |k_2|)$$

- 3. Suppose that S is a surface with principal curvatures k_1 and k_2 which obey the inequalities $|k_1| \le 1$ and $|k_2| \le 1$. Is it true that the (space) curvature κ of every curve α on S also has $|\kappa| \le 1$? (Be careful! And if you don't think so, give a specific example!)
- 4. Suppose that $\alpha(s)$ is an asymptotic curve of a surface S with Gauss curvature K and that the curvature of $\alpha(s)$ is not equal to zero. Prove that the torsion $\tau(s)$ of α is given by

$$|\tau(s)| = \sqrt{-K}.$$

2. CHALLENGE PROBLEMS

1. Show that the mean curvature H of a surface S at a point $p \in S$ can be expressed as the average of normal curvatures of curves in S through p. Suppose that $\kappa_n(\theta)$ is the normal curvature of a curve in S in direction $\cos \theta \vec{x}_u + \sin \theta \vec{x}_v$. Then we must prove

$$H = \frac{1}{\pi} \int_0^{\pi} \kappa_n(\theta) \, \mathrm{d}\theta.$$

- 2. Suppose that \vec{v} and \vec{w} are orthogonal directions in the tangent plane T_pS to a surface S. Show that the sum $\kappa_n(\vec{v}) + \kappa_n(\vec{w})$ does not depend on the choice of \vec{v} and \vec{w} as long as they are orthogonal.
- 3. Let p be a hyperbolic point on a surface S. Fix any $\vec{v} \in T_p S$. Describe a procedure for finding the conjugate direction to \vec{v} using the Dupin indicatrix.