
Math 4250/6250 Homework #4

This homework assignment covers our notes on regular surfaces (7-8), tangent planes (9) and
the first fundamental form (10). Please pick 5 of the following problems. Remember that under-
graduate students should average one challenge problem per assignment, while graduate students
should average two challenge problems per assignment. Everyone should complete the required
problems.

1. REGULAR PROBLEMS

1. Consider the sphere x2+y2+(z−1)2 = 1 centered at (0, 0, 1) with radius 1. We can construct a
(very important) map π from this sphere to the x-y plane by defining π(p) to be the intersection
of the line through p ∈ S2 and (0, 0, 2) with the x-y plane. We note that π is not defined at the
north pole (0, 0, 2).
(1) Show that the inverse map π−1 : R2 → S2 − (0, 0, 2) is defined by

π−1(u, v) =

(
4u

u2 + v2 + 4
,

4v

u2 + v2 + 4
,

2(u2 + v2)

u2 + v2 + 4

)
(2) Show that the inverse map π−1 provides a regular parametrization of S2 − (0, 0, 2).
(3) Find the first fundamental form Ip of this parametrization as a matrix.

2. Consider the hyperboloid of revolution S defined by x2 + y2 − z2 = 1. This surface intersects
the x-y plane in the circle x2 + y2 = 1. Prove that the tangent planes of S along this circle are
all parallel to the z axis.

3. Suppose that S is parametrized by a map X : R2 → S in the form

X(u, v) = α1(u) + α2(v)

where α1 and α2 are regular curves. For instance, if α1(u) = (cosu, sinu, 0) and α2(v) =
(0, 0, v), the surface is the cylinder. Show that the tangent planes along the curve

β(s) = X(s, v0)

are parallel to a line. What is the line?

4. Let α : [0, 1]→ R3 be a regular parametrized curve with unit tangent vector T (s). We say that
N1, N2 : [0, 1] → R3 form a framing for α if (T (s), N1(s), N2(s)) is an orthonormal basis for
R3 for every s. The tube around α of radius r is the surface parametrized by

X(u, v) = α(u) + cos vN1(u) + sin vN2(u).

Find the normal vector N(u, v) of the tube.

5. (Required Problem) Find the first fundamental form for the surfaces below (a, b, and c are
constants):
(1) The ellipsoid. X(u, v) = (a sinu cos v, b sinu sin v, c cosu).
(2) The elliptic paraboloid. X(u, v) = (au cos v, bu sin v, u2).
(3) The hyperboloid paraboloid. X(u, v) = (au cosh v, bu sinh v, u2).
(4) The hyperboloid of two sheets. X(u, v) = (a sinhu cos v, b sinhu sin v, c coshu).
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2. CHALLENGE PROBLEMS

1. Suppose we have an arclength-parametrized curveC(s) = (x(s), 0, z(s)) in the x-z plane which
does not meet the z axis. We can form the corresponding surface of revolution S generated by
C by rotating C around the z axis. This surface is parametrized by

X(u, v) = (x(v) cosu, x(v) sinu, z(v)).

(1) (Pappus’ Theorem) Show that the area of S is given by

A(S) = 2π

∫ `

0

x(s) ds.

where ` is the length of C.
(2) Suppose C is the circle of radius r1 in the x-z plane centered at (r2, 0, 0) (and r2 > r1).

Use the first part of this problem to compute the area of the torus of revolution generated
by C.

2. Generalize the last problem to show that the area of a tube of radius r around a curve α (cf.
Problem 4 above) is 2πr times the length of α.

3. Required Problem for Graduate Students: Extrinsic and Intrinsic Gradient. We might
remember that a function f(~x) on Rn has a directional derivative in any direction ~v given by
the limit

Df(~v) = lim
h→0

f(~x+ h~v)− f(~x)

h
.

We learn in multivariable calculus that this directional derivative is a linear function of v, and
so that Df is a linear functional on the space of direction vectors v. In fact, there is a special
vector∇f = (∂f/∂x1, . . . , ∂f/∂xn) so that

Df(v) = 〈v,∇f〉 .

If the function f(~x) is defined on a curved surface S, we still want to be able to understand
what it means to differentiate the function. In fact, the directional derivative at p is a linear
function of directions in the tangent plane TpS. This linear functional is now written as

Df(~v) = 〈~v,∇f〉Ip
.

where ∇f is a 2-vector in TpS given in Xu, Xv coordinates. This vector is called the intrinsic
gradient of f . But what is the formula for ∇f? It is important to know it. But it is clearly not
as simple as it used to be for functions defined on Rn. Finding a formula for ∇f will require
us to understand the first fundamental form in some detail, using the theory we’ve developed.
This leads us to an answer to our question “What is differential geometry for?”:

Differential geometry tells you how to do calculus on a curved surface.
Let’s begin. The extrinsic gradient of a differentiable function f : S → R is a differentiable

map∇f : S → R3 which assigns to each point of S a vector∇f(p) so that

Dfp(~v) = 〈∇f,~v〉R3 .

It’s worth noting that this is the R3 inner product because we wrote the gradient as a 3-vector
in space. Because we’re referring to the “external” space R3, we call this gradient “extrinsic”.
Show that
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(1) If E, F , G are the coefficients of the first fundamental form on S, then as a vector in R3

the extrinsic gradient is

∇f =
fuG− fvF

EG− F 2
~Xu +

fvE − fuF

EG− F 2
~Xv.

and hence the intrinsic gradient of f at p is

∇f =

(
fuG− fvF

EG− F 2
,
fvE − fuF

EG− F 2

)
.

(2) Suppose S is the x-y plane with the parametrization X(u, v) = (u, v, 0). Compute the co-
efficients of the first fundamental form and use the formula above to show that the intrinsic
gradient ∇f = (fu, fv).

(3) Fix a p in S and consider the unit circle |~v| = 1 in Tp(S). Prove that on this circle Dfp(~v)
is maximized ⇐⇒ v = ∇f/|∇f |.

(4) Consider a level curve C = {p ∈ S : f(p) = c} on S. Prove that ∇f is normal to C
everywhere.
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