Math 4250/6250 Homework #3

This homework assignment covers our notes on integral geometry (5) and on rotation index (6). Please pick 3 of the following problems. Remember that undergraduate students should average **one** challenge problem per assignment, while graduate students should average **two** challenge problems per assignment.

1. REGULAR PROBLEMS

- 1. Here are two related problems about length and curvature:
 - Suppose that $\alpha(s)$ is a simple closed plane curve with curvature $0 < \kappa(s) < 1/R$ (that is, curvature *less* than the curvature of a circle of radius R. Prove that

Length(
$$\alpha$$
) $\geq 2\pi R$.

• Suppose that $\alpha(s)$ is a curve of rotation index N with curvature $0 < \kappa(s) < 1/R$. Prove that

Length(
$$\alpha$$
) $\geq N2\pi R$.

2. Consider a unit circle C in the plane. Let S be the set of straight lines which intersect C and let S' be the set of straight lines which cut C in a chord of length $> \sqrt{3}$ (that is, a chord longer than the side of an equilateral triangle inscribed in C). Remember that we can parametrize lines in the plane by two coordinates: θ and p. Now for any set L of lines in the plane, we can define the "measure" (we know this as the area) of the set of lines to be the integral

$$M(L) = \int_{\ell(\theta, p) \in L} 1 \, \mathrm{d}p \, \mathrm{d}\theta.$$

For our sets S and S' above, prove that M(S')/M(S)=1/2. This shows that in a precise sense, half of the lines intersecting the circle make a chord larger than \sqrt{s} .

- 3. The curve $\alpha(t) = ((2a\cos t + b)\cos t, (2a\cos t + b)\sin t)$ with $t \in [0, 2\pi)$ is called a limacon. Compute the rotation index of this curve.
- 4. Suppose that $\alpha(s)$ is a closed convex plane curve. Define the *parallel curve* at distance r to be

$$\beta(s) = \alpha(s) - r\vec{n}(s)$$

where $\vec{n}(s)$ is the (unit) normal vector to α . If $\kappa_{\beta}(s)$ is the curvature of $\beta(s)$ and $\kappa_{\alpha}(s)$ is the curvature of $\alpha(s)$, prove that

1

- Length(β) = Length(α) + $2\pi r$.
- Area(β) = Area(α) + r Length(α) + πr^2 .
- $\kappa_{\beta}(s) = \kappa_{\alpha}(s)/(1 + r\kappa_{\alpha}(s)).$

2. CHALLENGE PROBLEMS

1. (Curves of Finite Total Curvature). Suppose $a(s): S^1 \to \mathbf{R}^2$ is a smooth, regular closed curve of length ℓ parametrized by arclength. Let a subdivision \mathcal{S}_n of a be a collection of parameter values $x_0 = 0 < x_1 < \cdots < x_n < \ell$. Let the mesh size $\operatorname{Mesh}(\mathcal{S}_n)$ of the subdivision \mathcal{S}_n be the maximum of $x_i - x_{i-1}$. The exterior angle or turning angle θ_i of the subdivision at i is the angle formed by $a(x_{i-1})a(x_i)$ and $a(x_i)a(x_{i+1})$.

If $\kappa(s)$ is the curvature of a(s), then the total curvature of a is given by

$$K = \int \kappa(s) \, \mathrm{d}s.$$

Prove that

$$K = \lim_{\operatorname{Mesh}(\mathcal{S}_n) \to 0} \sum_{i=0}^{n} \theta_i.$$

2. Prove Istvan Fary's integralgeometric formula for curvature. If a(s) is a space curve and $a_v(s)$ is the projection of a(s) to the plane through the origin normal to v, let $\kappa(s)$ denote the curvature of a(s) and $\kappa_v(s)$ denote the curvature of $a_v(s)$. And let K_v be the total curvature of $a_v(s)$ and $K_v(s)$ be the total curvature of so that

$$K_v = \int \kappa_v(s) ds$$
 and $K = \int \kappa(s) ds$.

Now show that

$$K = C \int_{S^2} K_v \, \mathrm{dArea}$$

where C is a constant, and v is integrated over S^2 .

Hint: Use problem 1 to reduce the problem to the case where a is a polygon. Show first that the total curvature of such a curve formed by two line segments w_1 and w_2 is the angle between the tangents to w_1 and w_2 .

Hint 2: Suppose that $\theta = \angle x_1 x_2 x_3$ is the angle between $x_2 x_1$ and $x_2 x_3$, and that θ_v is the angle between the projection of x_1 , x_2 , and x_3 into the plane normal to v. To complete hint 1, you must show that

$$\theta = C \operatorname{Avg}(\theta) = C \int_{v \in S^2} \theta_v \, dArea.$$

Instead of doing the integral on the right directly, try to prove that the function $Avg(\theta)$ is a linear function of θ . Can you compute Avg(0) and $Avg(\pi)$?

3. Prove Milnor's integralgeometric formula for curvature. If a(s) is a space curve with curvature $\kappa(s)$, let $a_v(s)$ be the projection of a(s) to a straight line. This is a nonregular curve with total curvature $K_v = \pi$ (the # of times the curve changes direction). Prove that

$$\int \kappa(s) \, \mathrm{d}s = K \int_{v \in S^2} k_v \, \mathrm{dArea}.$$

4. In exercise #4 of the regular problems we showed that one could define the **parallel curve** to a **smooth** convex curve $\alpha(t)$ by constructing the curve

$$\beta(t) = \alpha(t) - rN(t)$$

and that we could prove $\operatorname{Length}(\beta) = \operatorname{Length}(\alpha) + 2\pi r$ using differential geometry.

Suppose now that the curve $\alpha(t)$ is convex, but not smooth (like a square) and redefine the parallel to α to be the outer boundary curve of the set of points within distance r of the curve α . Prove that (as before)

$$Length(\beta) = Length(\alpha) + 2\pi r,$$

this time using integral geometry.