Math 4250/6250 Homework: Global theory of Curves

This homework assignment covers some global theorems about curves.

1. Obtain a length of wire (pipe cleaner works well) and a ruler (you can print out a ruler if you
don’t own one). Crumple the wire into a 3 dimensional shape of your choice.

a. Rotate it and photograph it from at least 6 directions of view. It helps if you stand a little
ways away and zoom in, but it’s not critical. Make sure that your wire is centered in the
image and that the ruler is visible (and square-on to the camera). Submit these photographs
with your homework (printouts are fine).

b. Measure the lengths of the wire in each photograph and record your data. I like to use Fiji
https://imagej.net/Fiji|to do this, but there are plenty of other tools available.
Describe your measurement process and submit marked up versions of your images showing
how you measured with your homework.

c. Measure the wire directly using your ruler. Submit a photograph of the wire and the ruler.

d. Explain how your results agree (or disagree) with the theorem on IntegralGeometric measure
for curves.

2. Write an explanation of the Fabricius-Bjerre theorem (not the proof, just the statement) which
contains several examples in the form of pictures and is understandable to non-math majors.
(This should take a couple of sheets of paper.) Test your explanation on at least 2 non-math
majors (this works well with children, if you have any around) and record their reactions.

3. (The change of variables theorem in two dimensions.) Suppose that we have smooth maps
z(u,v) : R? = Rand y(u,v) : R?> — R from the (u, v)-plane to the (z, y)-plane. Suppose we
have a region R in the (u,v) plane and R* = {(z(u,v), y(u,v))|(u,v) € R} (that is, R* is the
image of R under the map (z, y)). Recall that

f(z,y)dzdy = / flz(u,v),y(u,v)) det (3“ gv) dudv

R*

a. Consider the explicit functions x(u,v) = u, y(u,v) = v% Write down the relationship

between integrating dxdy and dudv using the change of variables formula above.

b. Let R be the rectangle [0, 2] x [0, 3] in the (u,v)-plane and f(z,y) = 2% + y>. Find R* in
the (x, y) plane and evaluate

/ [z, y)dedy

Write g(u,v) = f(z(u,v),y(u,v)) and compute the equivalent integral

/guvdet( g_g)dudv
" 9y

using the x(u, v) and y(u, v) functions from part a. Make sure that your answers match.
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4. We can define a system of coordinates on lines in the plane by

((0,p) = {(z, )| ((z,y), (cos 0, sin 0)) = p}

We say that the “natural measure” on lines in the plane is given by dfdp. You are now going to
prove that this measure doesn’t change when we translate or rotate the plane.

a. Suppose that we map the plane to the plane by the translation T3(z,y) = (x,y) + U. Find
the corresponding transformation ¢ of the space of lines. That is, T3(¢(0, p)) = {(t7(0,p)).

b. Prove that the transformation on 6, p coordinates given by (¢,q) = tz(0,p) has dfdp =
dedy.

c. Suppose that we map the plane to the plane by 7, (rotation around the axis by angle ). Find
the corresponding transformation r,;, of the space of lines. That is, R, (¢(6,p)) = £(ry(6,p)).

d. Prove that the transformation on 6, p coordinates given by (¢, q) = 74(0, p) has dfdp =
dodg.

5. We proved in class that for any plane curve vy
Length(v) = K /(#intersections of v with £(6, p))dfdp.

for some constant /. Check the value of K" by computing the right-hand integral for a circle of
radius 7.

6. Suppose we choose a random grid of lines spaced at unit intervals on the plane by choosing 6
(uniformly) randomly between 0 and 27 and choosing x (uniformly) randomly between 0 and
1 and letting

G(0,z) = {£(0, k + )|k is an integer }

a. Compute the expected number of intersections between lines in G(6, =) and the line segment
S joining (—L/2,0) and (L/2,0) by computing the integral

2m
/ (#intersections of S with lines in G(6, z))dfdzx.
0

b. Suppose that v is any curve of length L in the plane. Compute the expected number of
intersections between lines in G(6, z) and +y using the results of the last problem.

c. Take a small, easily traceable object (a credit card works pretty well), and throw it randomly
onto sheets of lined notebook paper 10 times. Each time, trace the object and count the
number of intersections between the outline and the lines on your notebook paper. (Turn in
your experiments.) Average this number of intersections and compare it with the perimeter
of your object.

7. (A topology problem similar in flavor to Fabricius-Bjerre)

a. Solve the following maze (turn in your solution):
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b. Now start on the left and right sides of an entrance, and color all the walls on one side of the

maze black and all walls on the other side red, as below:
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c. Suppose that we have a maze M so that the black walls are all connected, the red walls are
all connected, and every wall in the maze is either black or red after the coloring is complete.
Further, suppose that every square in M touches a wall (perhaps only at corners).

We can define a boundary square of M as one which touches both black and red walls

(perhaps only at corners of the square).

Prove that the boundary squares are all connected to each other in a path.

d. Prove that this path solves the maze.

e. Prove that this path is the shortest solution to the maze.
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f. (Extra credit) Show this trick to a friend or small child and blow their minds.

1. CHALLENGE PROBLEMS

1. There’s a natural intuition that making a curve of fixed length “three dimensional” involves
crumpling the curve and reducing distances between corresponding points (at least on average).
This intuition is captured by Sallee’s Stretching Theorem:

Theorem 1 (Sallee). If v is a closed space curve, there is a corresponding closed plane curve
~v* with the same length so that

v(s) = ()] < [v*(s) =7 ()]
for every pair s, t.

In this question, you’ll prove the theorem. Suppose you have a polygon V' in space with
vertices vy, ..., v,. Connecting each pair of vertices v;v;,; to a point p gives a collection of
triangles called the “cone of V' to p”.

a. The sum of the angles of the vertices of triangles at p is called the intrinsic cone angle 0(p).
Prove that if p is inside the convex hull of V' then 6(p) > 2.

b. Now prove that for some pgy, we have 0(pg) = 27. Hint: Consider the cone angle when p is
very far from V.

c. Now construct a planar polygon V* by laying the triangles of the cone at p; into the plane
around the origin. Show that V* is closed and has the same length as V.

d. Last, prove the theorem for V' and V*: if both polygons are parametrized by arclength
starting at the same vertex vy, then |V (s) — V(¢)| > |V*(s) — V*(t)| for any s, t. Extend the
theorem to smooth curves by approximation.
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