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The cohomology rings of real Stiefel manifolds
with integer coefficients

By

Martin Čadek∗, Mamoru Mimura∗∗ and Jǐŕı Vanžura∗

Abstract

The aim of this paper is the description of the integral cohomology
rings of the real Stiefel manifolds Vn,k in terms of generators and rela-
tions. The computation is carried out by using the Gysin exact sequence
for the sphere bundle Sn−k−1 → Vn,k+1 → Vn,k.

1. Introduction

Let n and k be integers, n ≥ 2 and 1 ≤ k ≤ n−1. The real Stiefel manifold
Vn,k is the homogeneous space SO(n)/SO(n− k). Equivalently, it is the space
of all k-tuples of orthonormal vectors in R

n. Its dimension is (1/2)k(2n−k−1).
The mod 2 cohomology of Vn,k was computed completely by Borel in [1].

In the same paper he also described the additive structure of the cohomology
with integer coefficients. The multiplicative structure was well known for k = 1
and 2. The special case of SO(n) = Vn,n−1 was described by Pittie in [4] where
he used the Serre spectral sequence for the fibration T → SO(n) → SO(n)/T
with maximal torus T in SO(n).

The aim of this note is to determine the ring structure of H∗(Vn,k; Z) in
terms of generators and relations. Our approach based on induction on k is
independent of the methods and results in [4]. At the final step of induction we
use mainly the Gysin exact sequence for the sphere bundle Sn−k−1 → Vn,k+1 →
Vn,k. Simultaneously, we find the explicit description of an additive basis of
H∗(Vn,k; Z) as a graded group.

In the next section we repeat some basic facts about H∗(Vn,k; Z2), intro-
duce some notation and state our main results Theorems 2.3 and 2.9. Their
proofs are given in Section 3. In the last section we conclude the paper by
comparing Theorem 2.3 with Pittie’s result.
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2. Main result

In [1] Borel proved

Proposition 2.1. The graded cohomology ring of the Stiefel manifolds
Vn,k with Z2 coefficients has a simple system of generators

zn−k, zn−k+1, . . . , zn−1,

where deg zi = i, Sqjzi =
(

i
j

)
zi+j mod 2 for n−k ≤ i ≤ n−j−1 and Sqjzi = 0

in the other cases.

Using Borel’s result we can state the following description of H∗(Vn,k; Z2)
as a graded ring:

Corollary 2.2. The graded cohomology ring of the Stiefel manifolds
Vn,k with Z2 coefficients is

H∗(Vn,k; Z2) ∼= Z2[zn−k, zn−k+1, . . . , zn−1]/Jn,k ,

where Jn,k is the ideal generated by the relations

z2
i = z2i for 2i ≤ n − 1,

z2
i = 0 for 2i ≥ n.

Now we prepare notation for the statement of our main result. Consider
the set

Mn,k = {i ∈ Z ; n − k ≤ 2i − 1 ≤ n − 2} .

Let I be a nonempty subset of Mn,k and write

zI =
∏
i∈I

z2i−1, z∅ = 1 .

It is convenient to put

zj = 0 for j /∈ {n − k, n − k + 1, . . . , n − 2, n − 1} .

Then for a nonempty set I which is not a subset of Mn,k ∪ {n/2}
zI =

∏
i∈I

z2i−1 = 0 .

Denote by δ the Bockstein homomorphism associated with the short exact
sequence 0 → Z

2×−→ Z
ρ2−→ Z2 → 0 where ρ2 is the reduction mod 2. According

to the previous definitions we have δzI = 0 whenever I is empty or not a
subset of Mn,k ∪ {n/2}. Write D(I, J) for the symmetric difference of the
sets I and J . Finally, let Λ stand for an exterior graded algebra over Z, i.e.,
the factor of a graded free Z-algebra over its generators modulo the relations
x · y = (−1)deg x deg yy · x.

To shorten our notation, from now on unless otherwise stated, we will use
H∗(X) for the cohomology groups or rings with integer coefficients.
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Theorem 2.3. Let 1 ≤ k ≤ n − 1. In H∗(Vn,k) there are classes yi

for i ∈ Mn,k, un−k and vn−1 of degrees 4i − 1, n − k and n − 1, respectively,
such that the graded cohomology ring of the Stiefel manifold Vn,k with integer
coefficients is

H∗(Vn,k) ∼= Λ(δzI , yi, un−k, vn−1)/In,k ,

where I ranges over all nonempty subsets of Mn,k, i ranges over all the elements
of Mn,k and In,k is an ideal generated by the relations (1)–(16) in which the
set I ⊆ Mn,k is nonempty, the set J ⊆ Mn,k can be empty and in the relations
(7)–(11) we use the convention that δzK = 0 whenever the set of integers K is
empty or not a subset of Mn,k ∪ {n/2} and

δzK∪{n/2} = δzKvn−1

for n even.
The list of relations is the following :

y2
i = δz8i−3 + δz4i−3δz4i−1 for i ≤ n + 1

8
,(1)

y2
i = δz4i−3δz4i−1 for

n + 2
8

≤ i ≤ n − 1
4

,(2)

y2
i = 0 for i ≥ n

4
,(3)

2δzI = 0,(4)

(δz2i−1)2 = δz4i−1 for i ≤ n − 1
4

,(5)

(δz2i−1)2 = 0 for i ≥ n

4
,(6)

δzIδzJ =
∑
i∈I

δz2i−1δzD(I−{i},J)

∏
j∈(I−{i})∩J

δz4j−3,(7)

δzIyj = δzI∪{2j} + δzI−{j}δz4j−3δz2j−1 for j ∈ I, 2j /∈ I,(8)
δzIyj = δzI−{2j}δz8j−3 + δzI−{j}δz4j−3δz2j−1 for j ∈ I, 2j ∈ I,(9)
δzIyj = δzI∪{j}δz2j−1 + δzI∪{2j} for j /∈ I, 2j /∈ I,(10)
δzIyj = δzI∪{j}δz2j−1 + δzI−{2j}δz8j−3 for j /∈ I, 2j ∈ I,(11)

un−k = 0 for n − k odd,(12)

u2
n−k = 0 for n − k even, k ≤ n

2
,(13)

u2
n−k = δz2n−2k−1 for n − k even, k ≥ n + 1

2
,(14)

vn−1 = 0 for n odd,(15)

v2
n−1 = 0 for n even.(16)

Appendix 2.4. Moreover, as for the reduction mod 2, we have

ρ2yi = z4i−1 + z2i−1z2i for i ≤ n − 1
4

,
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ρ2yi = z2i−1z2i for i ≥ n

4
,

ρ2un−k = zn−k for n − k even,

ρ2vn−1 = zn−1 for n even,

ρ2δzI = Sq1zI .

Remark 2.5. Putting J = ∅ in (7) we get

(2.6)
∑
i∈I

δz2i−1δzI−{i} = 0 .

Taking sets I and J disjoint in the same formula we get

δzIδzJ =
∑
i∈I

δz2i−1δz(I∪J)−{i} .

Remark 2.7. The order of a nonzero element x ∈ H∗(X) is the least
positive integer m such that mx = 0. If there is no such integer, we say that x
is of infinite order.

To prove the relations of Theorem 2.3 we will use the well known fact
that if TorH∗(X) has all nonzero elements of order 2, then ρ2 : Tor H∗(X) →
H∗(X; Z2) is a monomorphism. Then the proof of relations can be carried out
after reducing them mod 2. Using the fact that ρ2δ = Sq1 and Appendix 2.4
we can apply Proposition 2.1. The proof of relation (7) needs the following well
known formula

(2.8) Sq1xISq1xJ =
∑
i∈I

Sq1xiSq1xD(I−{i},J)x
2
(I−{i})∩J ,

where I, J are finite sets of indices, xi ∈ H∗(X; Z2) and xI =
∏

i∈I xi. Its con-
sequences are also relations in the torsion part of H∗(BO(n)) and H∗(BSO(n))
(see [2] and [3]).

To prove that the list of relations in Theorem 2.3 is complete we will need
an additive basis of H∗(Vn,k) as a graded Abelian group. One is described by
the following Theorem 2.9.

First, for all S ⊆ Mn,k put

yS =
∏
k∈S

yk.

Theorem 2.9. Let S range over all subsets of Mn,k, let I, J, K range
over all triples of subsets of Mn,k which are pairwise disjoint, I 	= ∅ and min I <
min J and let q ∈ {0, 1} for n even, q = 0 for n odd and r ∈ {0, 1} for n − k
even, r = 0 for n − k odd. Then the monomials

ur
n−kvq

n−1yS , ur
n−kvq

n−1yKδzI

∏
j∈J

δz2j−1

form an additive basis of H∗(Vn,k) as a graded Abelian group.
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Using Theorem 2.3 it is possible in principle to express products of two
elements of the basis above as a linear combination of the others.

3. Proofs

We have the sequence of canonical projections with spheres as fibres:

S1

��

S2

��

Sn−k−1

��

Sn−k

��

Sn−2

��
Vn,n−1 �� Vn,n−2 �� . . . �� Vn,k+1 �� Vn,k �� . . . �� Vn,2 �� Vn,1 = Sn−1.

The proofs of Theorems 2.3 and 2.9 will be carried out by induction on k for n
fixed. The basic tool for the inductive step is the Gysin exact sequence for the
fibre bundle

(3.1) Sn−k−1 −→ Vn,k+1
p−→ Vn,k.

It has the form

(3.2) −→ Hi−n+k(Vn,k) ∪e−→ Hi(Vn,k)
p∗
−→ Hi(Vn,k+1)

∆−→ Hi−n+k+1(Vn,k) ∪e−→ Hi+1(Vn,k) −→ .

Here e denotes the Euler class and ∆ is a group homomorphism with the
property

∆(xp∗(y)) = ∆(x)y

for any x ∈ H∗(Vn,k+1) and any y ∈ H∗(Vn,k). This formula will be used very
often without any further reference.

Fibration (3.1) is the part of the following commutative diagram:

(3.3) Sn−k−1 �� Vn−k+1,2

��

�� Sn−k

��
Sn−k−1 �� Vn,k+1

p2

��

p �� Vn,k

p1

��
Vn,k−1 Vn,k−1,

where p, p1 and p2 = p ◦ p1 are canonical projections.
Let us start with the induction. For k = 1 we have H∗(Vn,1) = H∗(Sn−1)

= Z[x]/〈x2〉, where deg x = n − 1. It agrees with Theorems 2.3 and 2.9 since
Mn,1 = ∅ and x = vn−1 for n even and x = un−1 for n odd.

The inductive step from k to k + 1 needs to distinguish the case n− k odd
from n − k even.
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The case n − k odd
Assume that the description of H∗(Vn,k) is given by Theorem 2.3 and its

additive basis is described by Theorem 2.9. Observe that the sets Mn,k and
Mn,k+1 are identical in this case. Therefore, to show that Theorems 2.3 and
2.9 hold also for Vn,k+1 it is sufficient to prove that the graded ring H∗(Vn,k+1)
is isomorphic to

(3.4) (H∗(Vn,k) ⊗ Z[un−k−1])/J ,

where un−k−1 has degree n−k−1 and J is an ideal generated by the relations

u2
n−k−1 = 0 for k ≤ n − 2

2
,

u2
n−k−1 = δz2n−2k−3 for k ≥ n − 1

2
.

In this case the Euler class of the sphere bundle (3.1) is zero. (For k = 1
the bundle corresponds to the tangent bundle over Vn,1 = Sn−1. For k > 1 we
have Hn−k(Vn,k) = 0 by induction.) So the Gysin exact sequence splits into
short exact sequences

0 −→ Hi+n−k(Vn,k)
p∗
−→ Hi+n−k(Vn,k+1)

∆−→ Hi+1(Vn,k) −→ 0.

The same also holds for the Gysin exact sequence mod 2.
For i = −1 we get isomorphisms ∆ : Hn−k−1(Vn,k+1) → H0(Vn,k) and ∆ :

Hn−k−1(Vn,k+1; Z2) → H0(Vn,k; Z2). Let z̃n−k−1 ∈ Hn−k−1(Vn,k+1; Z2) be the
element with the property ∆(z̃n−k−1) = 1. Then z̃n−k−1, z̃n−k = p∗(zn−k), . . . ,
z̃n−1 = p∗(zn−1) form a simple system of generators of H∗(Vn,k+1).

Analogously, in Hn−k−1(Vn,k+1) there is just one element un−k−1 with the
property ∆(un−k−1) = 1. Obviously, ρ2un−k−1 = z̃n−k−1.

We will compute u2
n−k−1 as follows. We have

∆(u2
n−k−1) ∈ Hn−k−1(Vn,k) = 0,

and hence u2
n−k−1 = p∗(a) for some a ∈ H2n−2k−2(Vn,k).

If k ≤ (n− 2)/2, the last group is zero according to the inductive assump-
tion. So is u2

n−k−1.
If k ≥ (n − 1)/2, the group H2n−2k−2(Vn,k) is generated by the element

δz2n−2k−3. Since

ρ2u
2
n−k−1 = z̃2

n−k−1 = z̃2n−2k−2 = ρ2δz̃2n−2k−3,

we get the relation u2
n−k−1 = δz̃2n−2k−3.

To establish the isomorphism between H∗(Vn,k+1) and (3.4) we will show
that every element c ∈ H∗(Vn,k+1) is of the form

c = un−k−1p
∗(a) + p∗(b),

where a, b ∈ H∗(Vn,k) are uniquely determined by c.
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Existence: Given c ∈ H∗(Vn,k+1), put a = ∆c. Then

∆(c − un−k−1p
∗(a)) = a − (∆un−k−1)a = 0.

Using the Gysin exact sequence we obtain that there is b ∈ H∗(Vn,k+1) such
that

c − un−k−1p
∗(a) = p∗(b).

Uniqueness: Suppose that for some a, b

un−k−1p
∗(a) + p∗(b) = 0.

Applying ∆ we get a = 0. Since p∗ is a monomorphism, b = 0 as well.
This completes the proof of the inductive step for n − k odd. �

The case n − k even
Suppose that H∗(Vn,i) is described by Theorems 2.3 and 2.9 for 1 ≤ i ≤

k. It is convenient to consider Vn,0 as a point with H∗(Vn,0) ∼= Z. Then
the canonical projection p1 : Vn,k → Vn,k−1 has good sense also for k = 1
and according the previous part of the proof it induces a monomorphism in
cohomology. We will often use the same letters for elements in cohomology of
Vn,k−1 and their p∗1-images in the cohomology of Vn,k.

Put l = (n − k)/2 and observe that

Mn,k+1 = Mn,k ∪ {l}.
Using the Gysin exact sequence we will find ring generators of H∗(Vn,k+1). We
will prove that they are of two types: the images of the generators of H∗(Vn,k)
under homomorphism p∗ : H∗(Vn,k) → H∗(Vn,k+1) and new generators ỹl,
δz̃{l}∪I for I ⊆ Mn,k where p∗un−k = δz{l}. We will carry it out in Lemmas
3.5, 3.6, 3.7 and 3.9.

Lemma 3.5. For n−k even the sphere bundle (3.1) has the Euler class
2un−k.

Proof. Let us consider the diagram (3.3). The generator un−k ∈
Hn−k(Vn,k) ∼= Z maps into a generator of Hn−k(Sn−k) and the Euler class
of the sphere bundle in the second row maps into the Euler class of the sphere
bundle in the first row. This class is twice the generator of Hn−k(Sn−k) since
the fibration is associated to the tangent bundle to Sn−k. Hence the Euler class
of (3.1) is 2un−k.

Now, we have the Gysin exact sequence

−→ Hi−n+k(Vn,k)
∪2un−k−→ Hi(Vn,k)

p∗
−→ Hi(Vn,k+1)
∆−→ Hi−n+k+1(Vn,k)

∪2un−k−→ Hi+1(Vn,k) −→
at our disposal.
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Lemma 3.6. Let zn−k, . . . , zn−1 be a simple system of generators for
H∗(Vn,k; Z2). Then there is a simple system of generators

z̃n−k−1 = z̃{l}, z̃n−k = p∗(zn−k), . . . , z̃n−1 = p∗zn−1

for H∗(Vn,k+1; Z2) and the relations

p∗(zI) = z̃I ,

p∗(δzI) = δz̃I ,

p∗(un−k) = δz̃n−k−1 = δz̃{l},
∆δz̃{l}∪I = δzI

hold for any I ⊆ Mn,k.

Proof. In the same way as for n − k odd, define z̃n−k−1 = z̃{l} ∈
Hn−k−1(Vn,k+1; Z2) by the property ∆z̃n−k−1 = 1. Then the mod 2 Gysin
exact sequence gives the simple system of generators given in the statement.
The first and the second relations are immediate consequences of the definitions.

As for the third one the Gysin exact sequence yields that Hn−k(Vn,k+1) ∼=
Z2 with elements p∗un−k and δz̃n−k−1 different from 0. Hence they have to be
equal.

The first equality follows from the Gysin exact sequence modulo 2. The
second one is its direct consequence. p∗(un−k) ∈ Hn−k(Vn,k+1) is an element
of order 2 and there is no other possibility than δz̃{l}.

Using the properties of ∆ we obtain

ρ2(∆δz̃{l}∪I) = ∆Sq1z̃{l}∪I

= ∆(z̃n−kz̃I) + ∆(z̃n−k−1Sq1z̃I) = 0 + Sq1zI∆zn−k−1

= ρ2δzI .

Since according to the inductive assumption H∗(Vn,k) has all the nonzero tor-
sion elements of order 2, we obtain the last relation.

Put ỹi = p∗(yi) for i ∈ Mn,k and ṽn−1 = p∗vn−1.

Lemma 3.7. There is just one element ỹl ∈ H2n−2k−1(Vn,k+1) such
that

∆ỹl = un−k,

ρ2ỹl = z̃n−k−1z̃n−k for k ≤ n

2
,

ρ2ỹl = z̃2n−2k−1 + z̃n−k−1z̃n−k for k ≥ n + 1
2

.

Proof. From the Gysin exact sequence we can extract the following short
exact sequence

0 → H2n−2k−1(Vn,k)
p∗
−→ H2n−2k−1(Vn,k+1)

∆−→ Hn−k(Vn,k) → 0.



�

�

�

�

�

�

�

�

Integral cohomology of Stiefel manifolds 419

The same also holds for Z2 coefficients.
First suppose k ≤ (n − 1)/2. Then n − 1 < 2n − 2k − 1 < 2n − 2k and

according to the induction assumption

H2n−2k−1(Vn,k) ∼= H2n−2k−1(Vn,k; Z2) ∼= 0.

H2n−2k−1(Vn,k+1) ∼= Z is generated by an element ỹl which is determined
by the property ∆ỹl = un−k. H2n−2k−1(Vn,k+1; Z2) ∼= Z2 is generated by
the element z̃n−k−1z̃n−k which satisfies ∆(z̃n−k−1z̃n−k) = zn−k. That is why
ρ2ỹl = z̃n−k−1z̃n−k.

For k ≥ (n+1)/2, we have 2n−2k−1 ≤ n−2. In this case H2n−2k−1(Vn,k)
= 0 while H2n−2k−1(Vn,k; Z2) ∼= Z2 is generated by z2n−2k−1. Hence
H2n−2k−1(Vn,k+1) ∼= Z is again generated by an element ỹ|l| which is deter-
mined by the property ∆ỹ|l| = un−k and H2n−2k−1(Vn,k+1; Z2) ∼= Z2 ⊕ Z2 is
generated by the elements z̃n−k−1z̃n−k and z̃2n−2k−1. Since

(3.8) ∆(z̃n−k−1z̃n−k) = zn−k, ∆z̃2n−2k−1 = 0,

we get ρ2ỹl = z̃n−k−1z̃n−k + az̃2n−2k−1 for some a ∈ {0, 1}. Now,

0 = Sq1ρ2ỹl = aSq1z̃2n−2k−1 + Sq1(z̃n−k−1z̃n−k) = (a + 1)z̃2n−2k,

which implies a = 1.
For k = n/2, we have n even and 2n − 2k − 1 = n − 1. In this case

H2n−2k−1(Vn,k) = Z is generated by vn−1. H2n−2k−1(Vn,k+1) ∼= Z ⊕ Z is gen-
erated by ṽn−1 = p∗vn−1 and by an element ỹ which satisfies the property ∆ỹ =
un−k. The elements z̃n−k−1z̃n−k and z̃n−1 generate H2n−2k−1(Vn,k+1; Z2) ∼=
Z2 ⊕ Z2. Since (3.8) still holds, we have ρ2ỹ = z̃n−k−1z̃n−k + az̃n−1 for some
a ∈ {0, 1}. Put yl = aṽn−1 + ỹ. Then ∆ỹl = un−k and

ρ2ỹl = az̃n−1 + z̃n−k−1z̃n−k + az̃n−1 = z̃n−k−1z̃n−k.

Lemma 3.9. For every element d ∈ H∗(Vn,k+1) there are elements
a, bI , c ∈ H∗(Vn,k−1) such that

d = ỹlp
∗
2(a) +

∑
I∈Mn,k

δz̃{l}∪Ip
∗
2(bI) + p∗2(c),

where p2 : Vn,k+1 → Vn,k−1 is the canonical projection.

Proof. From the knowledge of H∗(Vn,k) we deduce that any of its elements
has the form

un−kp∗1q(δzJ , yi, vn−1) +
∑

I⊆Mn,k

δzIp
∗
1rI(δzJ , yi, vn−1) +

∑
I⊆Mn,k

aI,sp
∗
1(yIv

s
n−1),

where q and rI are polynomials in the indicated variables, i ∈ Mn,k, s ∈ {0, 1}
and J are nonempty subsets of Mn,k. While the first two terms belong to
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Im ∆ = Ker 2un−k, the third one does not if different from zero. Hence any
d ∈ H∗(Vn,k+1) has the form

∆d = un−kp∗1q(δzJ , yi, vn−1) +
∑

I∈Mn,k

δzIp
∗
1rI(δzJ , yi, vn−1).

Using Lemmas 3.6, 3.7 and the properties of ∆ we have

∆(d − ỹlp
∗
2q(δzJ , yi, vn−1) −

∑
I∈Mn,k

δz̃{l}∪Ip
∗
2rI(δzJ , yi, vn−1)) = 0.

Since Ker∆ = Im p∗ = Im p∗2, we obtain the statement of Lemma.

Lemma 3.10. Every nonzero torsion element of H∗(Vn,k+1) is of order
2.

Proof. Suppose that d is a torsion element. We already know that it is
of the form

d = ỹlp
∗
2(a) +

∑
I∈Mn,k

δz̃{l}∪Ip
∗
2(bI) + p∗2(c).

Then

∆d = un−kp∗1a + p∗1


 ∑

I∈Mn,k

δzIbI




is also a torsion element. Since p∗1 is a monomorphism, a ∈ H∗(Vn,k−1) is of
order 2 or zero.

Hence the last summand p∗2(c) in the decomposition of d lies in
Tor H∗(Vn,k+1). It remains to prove that 2p∗2(c) = 0. There is an integer
m ≥ 2 such that 0 = mp∗2(c) = p∗(mp∗1(c)). Since Ker p∗ = Im(∪ 2un−k), there
is an element d ∈ H∗(Vn,k−1) such that

p∗1(mc) − un−kp∗1(2d) = 0.

From the uniqueness of such a decomposition we get that mc = 0 in H∗(Vn,k−1).
It implies 2c = 0, which completes the proof.

Lemma 3.11. As a ring, H∗(Vn,k+1) has generators ỹi, ṽn−1, δz̃I ,
where i is an element and I a nonempty subset of Mn,k+1. Moreover, these
generators satisfy all the relations stated in Theorem 2.3.

Proof. The first part has been proved by Lemma 3.9. We will show how
to prove the relations of Theorem 2.3 in the case of H∗(Vn,k+1).

Relations (4) and (12) are obvious. Just one of the relations (15) and (16)
holds in H∗(Vn,1), hence it has to hold in H∗(Vn,i) for all i ≥ 1. Since ỹi are
elements of odd degree, we get 2ỹ2

i = 0. So the relations (1)–(3), (5)–(11) are
relations in Tor H∗(Vn,k+1). Since all nonzero torsion elements are of order 2,
it is sufficient to prove the relations mod 2 using Proposition 2.1 and Corollary
2.2. For the relations (1)–(3) and (8)–(11) we have to use Lemma 3.7 first.
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The proof of (7) is based on Formula 2.8 and Corollary 2.2.

Consider
Rn,m = Λ(δzI , un−m, vn−1, yi)/In,m,

where I, i and In,m are described in Theorem 2.3, as an abstract ring. Accord-
ing to the inductive assumptions Rn,m are isomorphic to H∗(Vn,m) for m ≤ k.
Lemma 3.11 says that there is a canonical epimorphism

ϕ : Rn,k+1 → H∗(Vn,k+1).

It remains to prove that ϕ is an isomorphism. We will carry it out in Lemmas
3.13 and 3.14.

Recall that we still consider the case when n − k is even.

Lemma 3.12. The canonical projection p2 : Vn,k+1 → Vn,k−1 induces
monomorphisms

p∗2 : H∗(Vn,k−1) → H∗(Vn,k+1) and p∗2 : H∗(Vn,k−1; Z2) → H∗(Vn,k+1; Z2).

Proof. We have p2 = pp1. In the case of Z coefficients p∗1 is a monomor-
phism and

Im p∗1 ∩ Ker p∗ = Im p∗1 ∩ Im( ∪ 2un−k) = 0.

In the case of Z2 coefficients both p∗ and p∗1 are monomorphisms.

Lemma 3.13. Let Fk+1 be the free abelian group generated by the ele-
ments ỹI , ỹI ṽn−1 for n even and by the elements ỹI for n odd, I ⊆ Mn,k+1.
Then as groups

Rn,k+1
∼= Fk+1 ⊕ TorRn,k+1

and ϕ restricted to Fk+1 is a group monomorphism.

Proof. The first statement is obvious from the definition of Rn,k+1. Fur-
ther, any element of Fk+1 has the form

ỹla + b,

where a, b ∈ Fk−1. Suppose that the ϕ-image of this element in H∗(Vn,k+1) is
zero:

ỹlp
∗
2(a) + p∗2(b) = 0.

Application of ∆ yields un−kp∗1(a) = 0. From our knowledge of H∗(Vn,k) we
get a = 0. Now, p∗2(b) = 0 and by Lemma 3.12 also b = 0, which completes the
proof.

To simplify our notation we will abandon the tildes and we will not distin-
guish formally elements of Rn,k−1 from their images in Rn,k+1 and elements of
H∗(Vn,k−1) from their p∗2-images in H∗(Vn,k+1).

Let us consider couples (n, m) with n ≥ m ≥ 0. For any I, J , K ⊆ Mn,m

we put
ZI,J,K,q = vq

n−1yKδzI

∏
j∈J

δz2j−1,

where q ∈ {0, 1} for n even and q = 0 for n odd.
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Definition. The monomials ZI,J,K,q with I, J and K pairwise disjoint,
I 	= ∅ and min I < min J will be called admissible or (n, m)-admissible if we
want to emphasize that I, J, K ⊆ Mn,m. The triples of sets which are indices
of admissible monomials will be also called admissible.

Since TorRn,k+1 and TorH∗(Vn,k+1) have only elements of order 2, they
can be considered as Z2-vector spaces. To prove that ϕ restricted to TorRn,k+1

is an isomorphism we will show that the (n, k + 1)-admissible monomials in
Rn,k+1 have the following properties:

(a) They generate TorRn,k+1 as a Z2-vector space.
(b) Their ϕ-images are linearly independent in TorH∗(Vn,k+1).

Lemma 3.14. Let n − m be odd. Then (n, m)-admissible monomials
generate TorRn,m as a Z2-vector space.

Proof. If Mn,m = ∅, then TorRn,m = 0. For Mn,m 	= ∅ the relations
(1)–(3), (5)–(7), (15) and (16) imply that the monomials ZI,J,K,q, where I, J
and K range over all subsets of Mn,m, I 	= ∅, generate TorRn,m. We will
successively reduce this set of generators to the set of admissible monomials.

First, we prove by induction that for all r ∈ Mn,m ∪ {min Mn,m − 1} the
set

{ZI,J,K,q; I 	= ∅, min(I ∩ J) > r, min(I ∩ K) > r, min(J ∩ K) > r}
generates TorRn,m. The first step of induction for r = min Mn,m − 1 has
been already done. Suppose that the statement is true for r − 1 and prove it
for r using the relations from the definition of In,m. For the purposes of the
proof we enlarge the definition of ZI,J,K,q for all finite subsets I of integers
using the convention that ZI,J,K,q = 0 whenever I is empty or not a subset
of Mn,m ∪ {n/2} and ZI∪{n/2},J,K,q = vn−1ZI,J,K,q for n even and I ⊆ Mn,m.
(This is compatible with the conventions introduced in Section 2.)

(1) Suppose that min(I ∩ J) = min(I ∩ K) = min(J ∩ K) = r. If 2r /∈ I,
then according to (10)

ZI,J,K,q = vq
n−1yK


 ∏

j∈J−{r}
δz2j−1


 δzIδz2r−1

= vq
n−1yK


 ∏

j∈J−{r}
δz2j−1


 (δzI−{r}yr + δz(I−{r})∪{2r})

= ZI−{r},J−{r},K−{r},qy
2
r + Z(I−{r})∪{2r},J−{r},K,q.

If 2r ∈ I, then according to (11)

ZI,J,K,q = ZI−{r},J−{r},K−{r},qy
2
r + ZI−{r,2r},J−{r},K,qδz8r−3.

Using (1) or (2) or (3), our conventions from Theorem 2.3 and (5) or (6) if
necessary, we get that ZI,J,K,q is a sum of monomials ZI′,J′,K′,q, where min(I ′∩
J ′) > r, min(I ′ ∩ K ′) > r and min(J ′ ∩ K ′) > r.
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(2) Consider indices (I, J, K) with min(I ∩ J) > r, min(I ∩ K) > r and
min(J ∩ K) = r. If 2r /∈ I then according to (8) and (7)

ZI,J,K,q = vq
n−1δzI


 ∏

j∈J−{r}
δz2j−1


 yK−{r}yrδz2r−1

= vq
n−1


 ∏

j∈J−{r}
δz2j−1


 yK−{r}δzIδz{r,2r}

= vq
n−1


 ∏

j∈J−{r}
δz2j−1


 yK−{r}(δz2r−1δzI∪{2r} + δz4r−1δzI∪{r})

= ZI∪{2r},J,K−{r},q + ZI∪{r},J−{r},K−{r},qδz4r−3.

Notice that 4r − 3 ≥ r with equality only for r = 1. If 2r ∈ I, then according
to (8) and (7) similarly

ZI,J,K,q = ZI−{2r},J,K−{r},qδz8r−3 + ZI∪{r},J−{r},K−{r},qδz4r−1.

So in both cases ZI,J,K,q is a sum of monomials ZI′,J′,K′,q where min(I ′∩J ′) ≥
r, min(I ′ ∩ K ′) > r and min(J ′ ∩ K ′) > r.

(3) Now consider a triple (I, J, K) with min(I ∩ J) = r, min(I ∩ K) > r
and min(J ∩ K) > r. If 2r /∈ I, then according to (10)

ZI,J,K,q = ZI−{r},J−{r},K∪{r},q + Z(I−{r})∪{2r},J−{r},K,q.

If 2r ∈ I, then according to (11)

ZI,J,K,q = ZI−{r},J−{r},K∪{r},q + ZI−{r,2r},J−{r},K,qδz8r−3.

Using our conventions and (5) or (6) if necessary, we obtain ZI,J,K,q as a sum
of monomials ZI′,J′,K′,q, where min(I ′∩J ′) > r, min(I ′∩K ′) > r and min(J ′∩
K ′) > r.

(4) Consider indices (I, J, K) with min(I ∩ J) > r, min(I ∩ K) = r and
min(J ∩ K) > r. If 2r /∈ I, then according to (8)

ZI,J,K,q = ZI∪{2r},J,K−{r},q + ZI−{r},J∪{r},K−{r},qδz4r−3.

If 2r ∈ I, then according to (9)

ZI,J,K,q = ZI−{2r},J,K−{r},qδz8r−3 + ZI−{r},J∪{r},K−{r},qδz4r−3.

Using our conventions and (5) or (6) if necessary, we can write ZI,J,K,q as a
sum of monomials ZI′,J′,K′,q, where min(I ′ ∩ J ′) > r, min(I ′ ∩ K ′) > r and
min(J ′ ∩ K ′) > r.

We have proved that the monomials ZI,J,K,q with I 	= ∅ and I, J, K
pairwise disjoint generate TorRn,m. Consider such a triple of indices with
min J = r < min I. Then using (2.6) we have

δz2r−1δzI =
∑
i∈I

δz2i−1δz(I∪{r})−{i},
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which yields
ZI,J,K,q =

∑
i∈I

Z(I∪{r})−{i},(J∪{i})−{r},K,q,

where all the indices (I ′, J ′, K ′) on the right hand side are admissible.

For m = 1 or for m = 2 and n even there are no admissible triples since
Mn,m = ∅. For m = 2 and n odd there is just one admissible monomial
ZMn,2,∅,∅,0 = δzn−2 since Mn,2 = {(n− 1)/2}. A similar situation occurs when
m = 3 and n is even. Here there are two monomials since q = 0, 1. In both
cases the admissible monomials are linearly independent in Tor H∗(Vn,m).

Lemma 3.15. Let n − k be even. Suppose that (n, k − 1)-admissible
monomials are linearly independent in TorRn,k−1

∼= Tor H∗(Vn,k−1). Then
the ϕ-images of (n, k + 1)-admissible monomials are linearly independent in
Tor H∗(Vn,k+1).

Proof. Recall that Mn,k+1 = Mn,k−1 ∪{l}. First, we prove that if I, J, K
range over all (n, k − 1)-admissible indices, then the elements

(3.16) ϕ(ZI,J,K,q), ϕ(ZI∪{l},J,K,q), ϕ(ZI,J∪{l},K,q), ϕ(ZI,J,K∪{l},q)

are linearly independent in TorH∗(Vn,k+1). Suppose that
∑

I,J,K,q

aI,J,K,qϕ(ZI,J,K,q) +
∑

I,J,K,q

bI,J,K,qϕ(ZI∪{l},J,K,q)

+
∑

I,J,K,q

cI,J,K,qϕ(ZI,J∪{l},K,q) +
∑

I,J,K,q

dI,J,K,qϕ(ZI,J,K∪{l},q) = 0.

Applying ∆ : H∗(Vn,k+1) → H∗(Vn,k) we get

∑
I,J,K,q

bI,J,K,qp
∗
1(ZI,J,K,q) + un−k


 ∑

I,J,K,q

dI,J,K,qp
∗
1(ZI,J,K,q)


 = 0

in H∗(Vn,k). From the description of this ring (see (3.4)) we obtain
∑

I,J,K,q

bI,J,K,qZI,J,K,q = 0,
∑

I,J,K,q

dI,J,K,qZI,J,K,q = 0.

Linear independence of (n, k−1)-admissible monomials implies that all bI,J,K,q

= dI,J,K,q = 0. Now, reduce the remaining terms mod 2

∑
I,J,K,q

aI,J,K,qρ2ϕ(ZI,J,K,q) + z2l


 ∑

I,J,K,q

cI,J,K,qρ2ϕ(ZI,J,K,q)


 = 0.

Since z2l−1, z2l, . . . , zn−1 form a simple system of generators in H∗(Vn,k+1; Z2)
and p∗2 is a monomorphism, we have

∑
I,J,K,q

aI,J,K,qρ2ZI,J,K,q = 0,
∑

I,J,K,q

cI,J,K,qρ2ZI,J∪{l},K,q = 0
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in H∗(Vn,k−1; Z2). Now, ρ2 : Tor H∗(Vn,k−1) → H∗(Vn,k−1; Z2) is a monomor-
phism, so as a consequence of linear independence of ZI,J,K,q in Tor H∗(Vn,k−1),
we get aI,J,K,q = cI,J,K,q = 0.

All the (n, k + 1)-admissible monomials form the following list

(3.17) ZI,J,K,q , ZI∪{l},J,K,q , ZS∪{l},T,K,q , ZI,J,K∪{l},q ,

where (I, J, K) are (n, k − 1)-admissible and S, T, K ⊆ Mn,k−1 are pairwise
disjoint, T 	= ∅ and min T = r < min S. According to (2.6)

ZS∪{l},T,K,q = ZS∪{r},(T−{r})∪{l},K,q +
∑
i∈S

Z(S−{i})∪{l,r},(T−{r})∪{i},K,q.

Here the triples S∪{r}, (T −{r})∪{l}, K and (S−{i})∪{l, r}, (T −{r})∪{i},
K are (n, k−1)-admissible. Hence ϕ(ZS∪{l},T,K,q) can be expressed as a sum of
ϕ(ZS∪{r},(T−{r})∪{l},K,q) and elements of the form ϕ(ZI∪{l},J,K,q) with (n, k−
1)-admissible indices (I, J, K). Moreover, the assignment

(S, T, K) �→ (S ∪ {min T}, T − {min T}, K)

is one-to-one from the set of the triples of pairwise disjoint subsets of Mn,k−1

with minT < min S onto the set of (n, k − 1) admissible triples (I, J, K). So
the linear independence of elements in the list (3.16) implies that the ϕ-images
of (n, k + 1)-admissible monomials which form the list (3.17) are also linearly
independent.

Theorem 2.9 for Vn,k+1 is now an immediate consequence of Lemmas 3.13
through 3.15.

4. Comparison with Pittie’s result

If we apply Theorem 2.3 for k = n−1, we obtain the description of the ring
H∗(SO(n); Z). In [4] H. V. Pittie derived the description of the ring structure
of H∗(SO(n); Z) using the method based on the existence of a maximal torus
in SO(n). Comparing his result [4, 7.5] with Theorem 2.3 for k = n − 1, it
is seen at the first sight that his set of ring generators is smaller than ours.
Consequently, some of his relations are different and more complicated. In this
section we will outline how to reduce the set of the ring generators in Theorem
2.3 and how to get new relations if k = n − 1 to obtain the result from [4].

For j ∈ Mn,n−1 we define

αj = min{d; 2d+1j ≥ n} = max{d; 2d−1j ∈ Mn,n−1},
aj = 2αj .

From Corollary 2.2 we get that

z
aj−1
2j 	= 0,

z
aj

2j = z2αj+1j = 0.
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Similarly as in [4] we put

kij = aj −
i∑

r=0

2r.

Finally, put Ln = {i ∈ Mn,n−1; i odd}.
Proposition 4.1 (Compare with [4, 7.5]). In H∗(SO(n)) there are

classes yi for i ∈ Mn,n−1, and vn−1 of degrees 4i − 1 and n − 1, respectively,
such that the graded cohomology ring of SO(n) with integer coefficients is

H∗(SO(n)) ∼= Λ(δzI , δz2i−1, yi, vn−1)/Kn,

where I ranges over all the subsets of Ln with at least two elements, i ranges
over all the elements of Mn,n−1 and Kn is an ideal generated by the relations
(1)–(7), (15), (16) of Theorem 2.3 and by the relations (a)–(e) in which the set
I ⊆ Ln has at least two elements and the set J ⊆ Mn,n−1 is either empty or
contains only one element or J ⊆ Ln.

The list of new relations is the following :

2δz2i−1 = 0,(a)
αj−1∑
i=0

y2ij(δz2j−1)kij = 0, j ∈ Mn,n−1,(b)

δzI

αj−1∑
i=0

y2ij(δz2j−1)kij−1 + δzI−{j}δz4j−3(δz2j−1)aj−1 = 0,

j ∈ I, j ≤ n + 1
4

,

(c)

δzIyj = 0, j ∈ I, j ≥ n + 2
4

,(d)

δzI−{j}

αj−1∑
i=0

y2ij(δz2j−1)kij−1 + δzI(δz2j−1)aj−1 = 0, j ∈ I, j odd.(e)

The reduction of elements yi and vn−1 mod 2 is given in Appendix 2.4 to
Theorem 2.3.

Remark 4.2. The relation (7) stands for equivalent relations

δzIδzJ = δzI−JδzJ−I

∏
j∈I∩J

δz4j−3 + δzI∩JδzI∪J for I ∩ J 	= ∅,(f)

δzIδzJ =
∑
i∈I

δz2i−1δz(I∪J)−{i} for I ∩ J = ∅(g)

from [4, 7.5].

Outline of the proof of Proposition 4.1. First, we will show how to reduce
the set of the ring generators from Theorem 2.3 to the set described in Propo-
sition 4.1. Consider a set K ⊆ Mn,n−1 with at least two elements and with the
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biggest even element 2j. Put I = K − {2j}. If j ∈ K, from relation (8) we get

δzK = δzIyj + δzI−{j}δz4j−3δz2j−1,

while if j /∈ K, relation (10) implies

δzK = δzIyj + δzI∪{j}δz2j−1,

since j ∈ Mn,n−1. (And this is just the reason why we cannot perform this
reduction for any k.) All the even elements of the sets I, I−{j} and I∪{j} are
less than 2j. Hence repeating this procedure we obtain δzK as a polynomial in
the generators described by Proposition 4.1.

Now, on an example we will outline how to derive the relations (b), (c),
(d) and (e) from the relations (8), (10), (5) and (6). Consider j ∈ Mn,n−1,
4j < n ≤ 8j, j odd, and I ⊆ Ln which does not contain j. Then αj = 2 and
δzI∪{4j} = 0 according to our conventions. Using twice the relation (10) and
then the relation (5) we get

δzIy2j = δzI∪{2j}δz4j−1 + δzI∪{4j} = (δzIyj + δzI∪{j}δz2j−1)δz4j−1

= δzIyj(δz2j−1)2 + δzI∪{j}(δz2j−1)3,

which gives just the relation (e) for I and j.
To show that the list of relations in Proposition 4.1 is complete, we would

have to find a basis of TorH∗(SO(n)) in terms of monomials of the ring gen-
erators. Here we cannot use Theorem 2.3 directly and so we will not carry it
out since a different proof has been given in [4].
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