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Abstract

We derive a new self�organising learning algorithm which maximises
the information transferred in a network of non�linear units� The algo�
rithm does not assume any knowledge of the input distributions� and
is de	ned here for the zero�noise limit� Under these conditions� infor�
mation maximisation has extra properties not found in the linear case

Linsker ������ The non�linearities in the transfer function are able to
pick up higher�order moments of the input distributions and perform
something akin to true redundancy reduction between units in the out�
put representation� This enables the network to separate statistically
independent components in the inputs
 a higher�order generalisation of
Principal Components Analysis�

We apply the network to the source separation 
or cocktail party�
problem� successfully separating unknown mixtures of up to ten speak�
ers� We also show that a variant on the network architecture is able
to perform blind deconvolution 
cancellation of unknown echoes and
reverberation in a speech signal�� Finally� we derive dependencies of
information transfer on time delays� We suggest that information max�
imisation provides a unifying framework for problems in �blind� signal
processing�

�Please send comments to tony�salk�edu� This paper will appear as Neural Computation�
�� �� �������	� 
����
� The reference for this version is� Technical Report no� INC������
February ����� Institute for Neural Computation� UCSD� San Diego� CA ����	����	�
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� Introduction

This paper presents a convergence of two lines of research� The �rst� the
development of information theoretic unsupervised learning rules for neural
networks has been pioneered by Linsker ����� Becker � Hinton ����� Atick �
Redlich ����� Plumbley � Fallside ���� and others� The second is the use�
in signal processing� of higher	order statistics� for separating out mixtures of
independent sources 
blind separation� or reversing the e�ect of an unknown
�lter 
blind deconvolution�� Methods exist for solving these problems� but it
is fair to say that many of them are ad hoc� The literature displays a diversity
of approaches and justi�cations
for historical reviews see 
Comon ����� and

Haykin ����a��

In this paper� we supply a common theoretical framework for these prob	
lems through the use of information	theoretic objective functions applied to
neural networks with non	linear units� The resulting learning rules have en	
abled a principled approach to the signal processing problems� and opened a
new application area for information theoretic unsupervised learning�

Blind separation techniques can be used in any domain where an array of
N receivers picks up linear mixtures of N source signals� Examples include
speech separation 
the �cocktail party problem��� processing of arrays of radar
or sonar signals� and processing of multi	sensor biomedical recordings� A pre	
vious approach has been implemented in analog VLSI circuitry for real	time
source separation 
Vittoz et al ����� Cohen et al ������ The application areas
of blind deconvolution techniques include the cancellation of acoustic reverber	
ations 
for example the �barrel e�ect� observed when using speaker phones��
the processing of geophysical data 
seismic deconvolution� and the restoration
of images�

The approach we take to these problems is a generalisation of Linsker�s
infomax principle to non	linear units with arbitrarily distributed inputs un	
corrupted by any known noise sources� The principle is that described by
Laughlin 
����� 
see Fig��a�� when inputs are to be passed through a sigmoid
function� maximum information transmission can be achieved when the slop	
ing part of the sigmoid is optimally lined up with the high density parts of
the inputs� As we show� this can be achieved in an adaptive manner� using a
stochastic gradient ascent rule� The generalisation of this rule to multiple units
leads to a system which� in maximising information transfer� also reduces the
redundancy between the units in the output layer� It is this latter process� also
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called Independent Component Analysis 
ICA�� which enables the network to
solve the blind separation task�

The paper is organised as follows� Section � describes the new information
maximisation learning algorithm� applied� respectively to a single input� an
N � N mapping� a causal �lter� a system with time delays and a ��exible�
non	linearity� Section � describes the blind separation and blind deconvolution
problems� Section � discusses the conditions under which the information
maximisation process can �nd factorial codes 
perform ICA�� and therefore
solve the separation and deconvolution problems� Section � presents results
on the separation and deconvolution of speech signals� Section � attempts to
place the theory and results in the context of previous work and mentions the
limitations of the approach�

A brief report of this research appears in Bell � Sejnowski 
������

� Information maximisation

The basic problem tackled here is how to maximise the mutual information
that the output Y of a neural network processor contains about its input X�
This is de�ned as�

I
Y�X� � H
Y ��H
Y jX� 
��

where H
Y � is the entropy of the output� while H
Y jX� is whatever entropy
the output has which didn�t come from the input� In the case that we have no
noise 
or rather� we don�t know what is noise and what is signal in the input��
the mapping between X and Y is deterministic and H
Y jX� has its lowest
possible value� it diverges to ��� This divergence is one of the consequences
of the generalisation of information theory to continuous variables� What we
callH
Y � is really the �di�erential� entropy of Y with respect to some reference�
such as the noise	level or the accuracy of our discretisation of the variables in
X and Y �� To avoid such complexities� we consider here only the gradient

of information theoretic quantities with respect to some parameter� w� in our
network� Such gradients are as well	behaved as discrete	variable entropies�
because the reference terms involved in the de�nition of di�erential entropies
disappear� The above equation can be di�erentiated as follows� with respect

�see the discussion in Haykin ����b� chapter ��� also Cover � Thomas� chapter ��
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Figure �� Optimal information �ow in sigmoidal neurons 
a� Input x having
density function fx
x�� in this case a gaussian� is passed through a non	linear
function g
x�� The information in the resulting density� fy
y� depends on
matching the mean and variance of x to the threshold� w�� and slope� w� of
g
x� 
see Schraudolph et al ������ 
b� fy
y� is plotted for di�erent values of
the weight w� The optimal weight� wopt transmits most information�

to a parameter� w� involved in the mapping from X to Y �

�

�w
I
Y�X� �

�

�w
H
Y � 
��

because H
Y jX� does not depend on w� This can be seen by considering
a system which avoids in�nities� Y � G
X� � N � where G is some invert	
ible transformation and N is additive noise on the outputs� In this case�
H
Y jX� � H
N� 
Nadal � Parga ������ Whatever the level of this addi	
tive noise� maximisation of the mutual information� I
Y�X�� is equivalent to
the maximisation of the output entropy� H
Y �� because 
���w�H
N� � ��
There is nothing mysterious about the deterministic case� despite the fact that
H
Y jX� tends to minus in�nity as the noise variance goes to zero�

Thus for invertible continuous deterministicmappings� the mutual informa	
tion between inputs and outputs can be maximised by maximising the entropy
of the outputs alone�
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��� For one input and one output

When we pass a single input x through a transforming function g
x� to give
an output variable y� both I
y� x� and H
y� are maximised when we align
high density parts of the probability density function 
pdf� of x with highly
sloping parts of the function g
x�� This is the idea of �matching a neuron�s
input	output function to the expected distribution of signals� that we �nd in

Laughlin ������ See Fig��a for an illustration�

When g
x� is monotonically increasing or decreasing 
ie� has a unique
inverse�� the pdf of the output� fy
y�� can be written as a function of the pdf
of the input� fx
x�� 
Papoulis� eq� �	���

fy
y� �
fx
x�

j�y��xj 
��

where the bars denote absolute value� The entropy of the output� H
y�� is
given by�

H
y� � �E �ln fy
y�� � �
Z �

��
fy
y� ln fy
y�dy 
��

where E��� denotes expected value� Substituting 
�� into 
�� gives

H
y� � E

�
ln

������y�x
�����
�
�E �ln fx
x�� 
��

The second term on the right 
the entropy of x� may be considered to be
una�ected by alterations in a parameter w determining g
x�� Therefore in
order to maximise the entropy of y by changing w� we need only concentrate on
maximising the �rst term� which is the average log of how the input a�ects the
output� This can be done by considering the �training set� of x�s to approximate
the density fx
x�� and deriving an �online�� stochastic gradient ascent learning
rule�

�w � �H

�w
�

�

�w

�
ln

������y�x
�����
�
�

�
�y

�x

���
�

�w

�
�y

�x

�

��

In the case of the logistic transfer function�

y �
�

� � e�u
� u � wx� w� 
��
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in which the input is multiplied by a weight w and added to a bias	weight w��
the terms above evaluate as�

�y

�x
� wy
�� y� 
��

�

�w

�
�y

�x

�
� y
�� y�
� � wx
� � �y�� 
��

Dividing 
�� by 
�� gives the learning rule for the logistic function� as calculated
from the general rule of 
���

�w � �

w
� x
�� �y� 
���

Similar reasoning leads to the rule for the bias	weight�

�w� � �� �y 
���

The e�ect of these two rules can be seen in Fig��a� For example� if the input pdf
fx
x� were gaussian� then the �w�	rule would centre the steepest part of the
sigmoid curve on the peak of fx
x�� matching input density to output slope� in
a manner suggested intuitively by 
��� The �w	rule would then scale the slope
of the sigmoid curve to match the variance of fx
x�� For example� narrow pdf�s
would lead to sharply	sloping sigmoids� The �w	rule is anti�Hebbian�� with an
anti�decay term� The anti	Hebbian term keeps y away from one uninformative
situation� that of y being saturated at � or �� But an anti	Hebbian rule alone
makes weights go to zero� so the anti	decay term 
��w� keeps y away from the
other uninformative situation� when w is so small that y stays around ����

The e�ect of these two balanced forces is to produce an output pdf� fy
y��
that is close to the �at unit distribution� which is the maximum entropy dis	
tribution for a variable bounded between � and �� Fig��b shows a family of
these distributions� with the most informative one occurring at wopt�

A rule which maximises information for one input and one output may
be suggestive for structures such as synapses and photoreceptors which must
position the gain of their non	linearity at a level appropriate to the average
value and size of the input �uctuations 
Laughlin ������ However� to see the
advantages of this approach in arti�cial neural networks� we now analyse the
case of multi	dimensional inputs and outputs�

�If y � tanh
wx� w�
 then �w � �

w
� �xy
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��� For an N � N network

Consider a network with an input vector x� a weight matrix W� a bias vector
w� and a monotonically transformed output vector y � g
Wx�w��� Analo	
gously to 
��� the multivariate probability density function of y can be written

Papoulis� eq� �	����

fy
y� �
fx
x�

jJ j 
���

where jJ j is the absolute value of the Jacobian of the transformation� The
Jacobian is the determinant of the matrix of partial derivatives�

J � det

�
���

�y�
�x�

� � � �y�
�xn

���
���

�yn
�x�

� � � �yn
�xn

�
		
 
���

The derivation proceeds as in the previous section except instead of maximising
ln j�y��xj� now we maximise ln jJ j� This latter quantity represents the log of
the volume of space in y into which points in x are mapped� By maximising
it� we attempt to spread our training set of x	points evenly in y�

For sigmoidal units� y � g
u�� u � Wx � w�� with g being the logistic
function� g
u� � 
� � e�u���� the resulting learning rules are familiar in form

proof given in the Appendix��

�W �
h
WT

i��
� 
�� �y�xT 
���

�w� � �� �y 
���

except that now x� y� w� and � are vectors 
� is a vector of ones�� W is a
matrix� and the anti	Hebbian term has become an outer product� The anti	
decay term has generalised to an anti�redundancy term� the inverse of the
transpose of the weight matrix� For an individual weight� wij� this rule amounts
to�

�wij � cof wij

detW
� xj
�� �yi� 
���

where cof wij� the cofactor of wij � is 
���i�j times the determinant of the
matrix obtained by removing the ith row and the jth column from W�

This rule is the same as the one for the single unit mapping� except that
instead of w � � being an unstable point of the dynamics� now any degenerate
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weight matrix is unstable� since detW � � if W is degenerate� This fact
enables di�erent output units yi to learn to represent di�erent things in the
input� When the weight vectors entering two output units become too similar�
detW becomes small and the natural dynamic of learning causes these weight
vectors to diverge from each other� This e�ect is mediated by the numera	
tor� cof wij � When this cofactor becomes small� it indicates that there is a
degeneracy in the weight matrix of the rest of the layer 
ie� those weights not
associated with input xj or output yi�� In this case� any degeneracy in Whas
less to do with the speci�c weight wij that we are adjusting� Further discussion
of the convergence conditions of this rule 
in terms of higher	order moments�
is deferred to section ����

The utility of this rule for performing blind separation is demonstrated in
section ����

��� For a causal �lter

It is not necessary to restrict our architecture to weight matrices� Consider
the top part of Fig��b� in which a time series x
t�� of length M � is convolved
with a causal �lter w�� � � � � wL of impulse response w
t�� to give an output time
series u
t�� which is then passed through a non	linear function g� to give y
t��
We can write this system either as a convolution or as a matrix equation�

y
t� � g
u
t�� � g
w
t� � x
t�� 
���

Y � g
U� � g
WX� 
���

in which Y � X and U are vectors of the whole time series� and W is a M �M
matrix� When the �ltering is causal� W will be lower triangular�

W �

�
�����������

wL � � � � � �
wL�� wL � � � � �
���

���
w� � � � wL � � � �
���

���
� � � � w� � � � wL

�
										



���

�



At this point� we take the liberty of imagining there is an ensemble of such
time series� so that we can write�

fY 
Y � �
fX
X�

jJ j 
���

where again� jJ j is the Jacobian of the transformation� We can �create� this
ensemble from a single time series by chopping it into bits 
of length L for
example� making W in 
��� an L�L matrix�� The Jacobian in 
��� is written
as follows�

J � det

�
�y
ti�

�x
tj�

�
ij

� 
detW �
MY
t��

y�
t� 
���

and may be decomposed into the determinant of the weight matrix 
���� and
the product of the slopes of the squashing function� y�
t� � �y
t���u
t�� for all
times t �see Appendix 
����� Because W is lower	triangular� its determinant
is simply the product of its diagonal values� which is wM

L � As in the previous
section� we maximise the joint entropy H
Y � by maximising ln jJ j� which can
then be simply written as�

ln jJ j � ln jwM
L j�

MX
t��

ln jy�
t�j 
���

If we assume that our non	linear function g is the hyperbolic tangent 
tanh��
then di�erentiation with respect to the weights in our �lter w
t�� gives two
simple� rules�

�wL �
MX
t��

�
�

wL

� �xt yt

�

���

�wL�j �
MX
t�j


��xt�j yt� 
���

Here� wL is the �leading� weight� and the wL�j� where j � �� are tapped delay
lines linking xt�j to yt� The leading weight thus adjusts just as would a weight
connected to a neuron with only that one input 
see section ����� The delay
weights attempt to decorrelate the past input from the present output� Thus
the �lter is kept from �shrinking� by its leading weight�

The utility of this rule for performing blind deconvolution is demonstrated
in section ����

�The corresponding rules for non�causal �lters are substantially more complex�
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��� For weights with time delays

Consider a weight� w� with a time delay� d� and a sigmoidal non	linearity� g�
so that�

y
t� � g�wx
t� d�� 
���

We can maximise the entropy of y with respect to the time delay� again by
maximising the log slope of y �as in 
��� �

�d � �H

�d
�

�

�d

ln jy�j� 
���

The crucial step in this derivation is to realise that

�

�d
x
t� d� � � �

�t
x
t� d�� 
���

Calling this quantity simply � �x� we may then write�

�y

�d
� �w �xy� 
���

Our general rule is therefore given as follows�

�

�d

ln jy�j� � �

y�
�y�

�y

�y

�d
� �w �x

�y�

�y

���

When g is the tanh function� for example� this yields the following rule for
adapting the time delay�

�d � �w �xy� 
���

This rule holds regardless of the architecture in which the network is embedded�
and it is local� unlike the �w rule in 
���� It bears a resemblance to the rule
proposed by Platt � Faggin 
����� for adjustable time delays in the network
architecture of Jutten � Herault 
������

The rule has an intuitive interpretation� Firstly� if w � �� there is no
reason to adjust the delay� Secondly� the rule maximises the delivered power

of the inputs� stabilising when h �xyi � �� As an example� if y received several
sinusoidal inputs of the same frequency� �� and di�erent phase� each with its
own adjustable time delay� then the time delays would adjust until the phases
of the time	delayed inputs were all the same� Then� for each input� h �xyi would
be proportional to hcos�t � tanh
sin�t�i which would be zero�
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In adjusting delays� therefore� the rule will attempt to line up similar signals
in time� and cancel time delays caused by the same signal taking alternate
paths�

We hope to explore� in future work� the usefulness of this rule for adjusting
time delays and tap	spacing in blind separation and blind deconvolution tasks�

��� For a generalised sigmoid function

In section �� we show how it is sometimes necessary not only to train the
weights of the network� but also to select the form of the non	linearity� so that
it can �match� input pdf�s� In other words� if the input to a neuron is u� with a
pdf of fu
u�� then our sigmoid should approximate� as closely as possible� the
cumulative distribution of this input�

y � g
u� �
Z u

��
fu
v�dv 
���

One way to do this is to de�ne a ��exible� sigmoid which can be altered to �t

the data� in the sense of 
���� An example of such a function is the asymmetric
generalised logistic function 
see also Baram � Roth ����� described by the
di�erential equation�

y� �
dy

du
� yp
� � y�r 
���

where p and r are positive real numbers� Numerical integration of this equa	
tion produces sigmoids suitable for very peaked 
as p� r � �� see Fig��b� and
�at� unit	like 
as p� r � �� see Fig��c� input distributions� So by varying these
coe�cients� we can mold the sigmoid so that its slope �ts unimodal distribu	
tions of varying kurtosis� By having p �� r� we can also account for some skew
in the distributions� When we have chosen values for p and r� perhaps by some
optimisation process� the rules for changing a single input	output weight� w�
and a bias� w�� are subtly altered from 
��� and 
���� but clearly the same
when p � r � ��

�w � �

w
� x
p
� � y�� ry� 
���

�w� � p
� � y�� ry 
���

The importance of being able to train a general function of this type will be
explained in section ��
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Figure �� The generalised logistic sigmoid 
top row� of 
���� and its slope� y��

bottom row�� for 
a� p � r � �� 
b� p � r � � and 
c� p � r � ���� Compare
the slope of 
b� with the pdf in Fig��a� it provides a good match for natural
speech signals�

� Background to blind separation and blind

deconvolution

Blind separation and blind deconvolution are related problems in signal pro	
cessing� In blind separation� as introduced by Herault � Jutten 
������ and
illustrated in Fig��a� a set of sources� s�
t�� � � � � sN 
t�� 
di�erent people speak	
ing� music etc� are mixed together linearly by a matrix A� We do not know
anything about the sources� or the mixing process� All we receive are the N
superpositions of them� x�
t�� � � � � xN
t�� The task is to recover the original
sources by �nding a square matrix� W� which is a permutation and rescaling
of the inverse of the unknown matrix� A� The problem has also been called
the �cocktail	party� problem�

In blind deconvolution� described in 
Haykin ����� ����a� and illustrated
in Fig��b� a single unknown signal s
t� is convolved with an unknown tapped
delay	line �lter a�� � � � � aK� giving a corrupted signal x
t� � a
t��s
t� where a
t�
is the impulse response of the �lter� The task is to recover s
t� by convolving

�though for now� we ignore the problem of signal propagation delays�
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Figure �� Network architectures for 
a� blind separation of � mixed signals�
and 
b� blind deconvolution of a single signal�

x
t� with a learnt �lter w�� � � � � wL which reverses the e�ect of the �lter a
t��
There are many similarities between the two problems� In one� sources

are corrupted by the superposition of other sources� In the other� a source
is corrupted by time	delayed versions of itself� In both cases� unsupervised
learning must be used because no error signals are available� In both cases�
second	order statistics are inadequate to solve the problem�

For example� for blind separation� a second	order decorrelation technique
such as that of Barlow � F oldi!ak 
����� would �nd uncorrelated� or linearly
independent� projections� y� of the input data� x� But it could only �nd a
symmetric decorrelation matrix� which would not su�ce if the mixing matrix�
A� were asymmetric 
Jutten � Herault ������ Similarly� for blind deconvolu	
tion� second	order techniques based on the autocorrelation function� such as
prediction	error �lters� are phase�blind� They do not have su�cient informa	
tion to estimate the phase of the corrupting �lter� a
t�� only its amplitude

Haykin ����a��

The reason why second	order techniques fail is that these two �blind� signal
processing problems are information theoretic problems� We are assuming�
in the case of blind separation� that the sources� s� are statistically inde	
pendent and non	gaussian� and in the case of blind deconvolution� that the
original signal� s
t�� consists of independent symbols 
a white process�� Then
blind separation becomes the problem of minimising the mutual information
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between outputs� ui� introduced by the mixing matrix A" and blind deconvo	
lution becomes the problem of removing from the convolved signal� x
t�� any
statistical dependencies across time� introduced by the corrupting �lter a
t��
The former process� the learning of W� is called the problem of Independent
Component Analysis� or ICA 
Comon ������ The latter process� the learning
of w
t� is sometimes called the whitening of x
t�� Henceforth� we use the term
redundancy reduction when we mean either ICA or the whitening of a time
series�

In either case� it is clear in an information	theoretic context� that second	
order statistics are inadequate for reducing redundancy� because the mutual
information between two variables involves statistics of all orders� except in
the special case that the variables are jointly gaussian�

In the various approaches in the literature� the higher	order statistics re	
quired for redundancy reduction have been accessed in two main ways� The
�rst way is the explicit estimation of cumulants and polyspectra� See Comon

����� and Hatzinakos � Nikias 
����� for the application of this approach to
separation and deconvolution respectively� The drawbacks of such direct tech	
niques are that they can sometimes be computationally intensive� and may be
inaccurate when cumulants higher than �th order are ignored� as they usually
are� It is currently not clear why direct approaches can be surprisingly suc	
cessful despite errors in the estimation of the cumulants� and in the usage of
these cumulants to estimate mutual information�

The second main way of accessing higher	order statistics is through the
use of static non	linear functions� The Taylor series expansions of these non	
linearities yield higher	order terms� The hope� in general� is that learning
rules containing such terms will be sensitive to the right higher	order statistics
necessary to perform ICA or whitening� Such reasoning has been used to justify
both the Herault	Jutten 
or �H	J�� approach to blind separation 
Comon et al
����� and the so	called �Bussgang� approaches to blind deconvolution 
Bellini
������ The drawback here is that there is no guarantee that the higher	order
statistics yielded by the non	linearities are weighted in a way relating to the
calculation of statistical dependency� For the H	J algorithm� the standard
approach is to try di�erent non	linearities on di�erent problems to see if they
work�

Clearly� it would be of bene�t to have some method of rigorously link	
ing our choice of a static non	linearity to a learning rule performing gradient
ascent in some quantity relating to statistical dependency� Because of the in	
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�nite number of higher	order statistics involved in statistical dependency� this
has generally been thought to be impossible� As we now show� this belief is
incorrect�

� When does information maximisation re�
duce statistical dependence�

In this section� we consider under what conditions the information maximisa�

tion algorithm presented in section � minimises the mutual information be	
tween outputs 
or time points� and therefore performs redundancy reduction�

Consider a system with two outputs� y� and y� 
two output channels in the
case of separation� or two time points in the case of deconvolution�� The joint
entropy of these two variables may be written as 
Papoulis� eq� ��	����

H
y�� y�� � H
y�� �H
y��� I
y�� y��� 
���

Maximising this joint entropy consists of maximising the individual entropies
while minimising the mutual information� I
y�� y��� shared between the two�
When this latter quantity is zero� the two variables are statistically indepen	
dent� and the pdf can be factored� fy�y�
y�� y�� � fy�
y��fy�
y��� Both ICA
and the �whitening� approach to deconvolution are examples of minimising
I
y�� y�� for all pairs y� and y�� This process is variously known as factorial
code learning 
Barlow ������ predictability minimisation 
Schmidhuber �����
as well as independent component analysis 
Comon ����� and redundancy
reduction 
Barlow ����� Atick ������

The algorithm presented in section � is a stochastic gradient ascent algo	
rithmwhich maximises the joint entropy in 
���� In doing so� it will� in general�
reduce I
y�� y��� reducing the statistical dependence of the two outputs�

However� it is not guaranteed to reach the absolute minimum of I
y�� y���
because of interference from the other terms� the H
yi�� Fig�� shows one
pathological situation where a �diagonal� projection� �c� of two independent�
uniformly	distributed variables x� and x� is preferred over an �independent�
projection� �b� This is because of a �mismatch� between the input pdf�s and
the slope of the sigmoid non	linearity� The learning procedure is able to achieve
higher values in �c for the individual output entropies� H
y�� and H
y��� be	
cause the pdf�s of x� � x� and x� � x� are triangular� more closely matching
the slope of the sigmoid� This interferes with the minimisation of I
y�� y���
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Figure �� An example of when joint entropy maximisation fails to yield statis	
tically independent components� 
a� Two independent input variables� x� and
x�� having uniform 
�at� pdf�s are input into an entropy maximisation net	
work with sigmoidal outputs� Because the input pdf�s are not well	matched to
the non	linearity� the �diagonal� solution 
c� has higher joint entropy than the
�independent	component� solution 
b�� despite its having non	zero mutual in	
formation between the outputs� The values given are for illustration purposes
only�

In many practical situations� however� such interference will have minimal
e�ect� We conjecture that only when the pdf�s of the inputs are sub�gaussian


meaning their kurtosis� or �th order standardised cumulant� is less than ���
may unwanted higher entropy solutions for logistic sigmoid networks be found
by combining inputs in the way shown in �c 
Kenji Doya� personal commu	
nication�� Many real	world analog signals� including the speech signals we
used� are super	gaussian� They have longer tails and are more sharply peaked
than gaussians 
see Fig���� For such signals� in our experience� maximising
the joint entropy in simple logistic sigmoidal networks always minimises the
mutual information between the outputs 
see the results in section ���

We can tailor conditions so that the mutual information between outputs is
minimised� by constructing our non	linear function� g
u�� so that it matches�
in the sense of 
���� the known pdf�s of the independent variables� When
this is the case� H
y� will be maximised 
meaning fy
y� will be the �at unit

��



(a) (b) (c)

Figure �� Typical probability density functions for 
a� speech 
b� rock music
and 
c� gaussian white noise� The kurtosis of pdf�s 
a� and 
b� was greater
than �� and they would be classi�ed as super	gaussian�

distribution� only when u carries one single independent variable� Any linear
combination of the variables will produce a �more gaussian� fu
u� 
due to
central limit tendencies� and a resulting suboptimal 
non	�at� fy
y��

We have presented� in section ���� one possible ��exible� non	linearity� This
suggests a two	stage algorithm for performing Independent Component Anal	
ysis� First� a non	linearity such as that de�ned by 
��� is optimised to approx	
imate the cumulative distributions� 
���� of known independent components

sources�� Then networks using this non	linearity are trained using the full
weight matrix and bias vector generalisation of 
��� and 
����

�W �
h
WT

i��
� �p
�� y�� ry�xT 
���

�w� � p
�� y�� ry 
���

This way� we can be sure that the problem of maximising the mutual infor	
mation between the inputs and outputs� and the problem of minimising the
mutual information between the outputs� have the same solution�

This argument is well	supported by the analysis of Nadal � Parga 
������
who independently reached the conclusion that in the low	noise limit� infor	
mation maximisation yields factorial codes when both the non	linear function�
g
u�� and the weights� w� can be optimised� Here� we provide a practical
optimisation method for the weights and a framework for optimising the non	
linear function� Having discussed these caveats� we now present results for
blind separation and blind deconvolution using the standard logistic function�
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� Methods and results

The experiments presented here were obtained using � second segments of
speech recorded from various speakers 
only one speaker per recording�� All
signals were sampled at � kHz from the output of the auxiliary microphone
of a Sparc	�� workstation� No special post	processing was performed on the
waveforms� other than that of normalising their amplitudes so they were appro	
priate for use with our networks 
input values roughly between 	� and ��� The
method of training was stochastic gradient ascent� but because of the costly
matrix inversion in 
���� weights were usually adjusted based on the summed
�W�s of small �batches� of length B� where � 	 B 	 ���� Batch training was
made e�cient using vectorised code written in MATLAB� To ensure that the
input ensemble was stationary in time� the time index of the signals was per	
muted� This means that at each iteration of the training� the network would
receive input from a random time point� Various learning rates� were used

���� was typical�� It was helpful to reduce the learning rate during learning
for convergence to good solutions�

��� Blind separation results

The architecture in Fig��a and the algorithm in 
��� and 
��� was su�cient
to perform blind separation� A random mixing matrix � A� was generated
with values usually uniformly distributed between 	� and �� This was used to
make the mixed time series� x from the original sources� s� The matrices s
and x� then� were both N �M matrices 
N signals� M timepoints�� and x was
constructed from s by 
�� permuting the time index of s to produce sy� and

�� creating the mixtures� x by multiplying by the mixing matrix� x � Asy�
The unmixing matrix�W� and the bias vector w� were then trained�

An example run with �ve sources is shown in Fig��� The mixtures� x�
formed an incomprehensible babble� This unmixed solution was reached after
around ��� time points were presented� equivalent to about �� passes through
the complete time series��� though much of the improvement occurred on the
�rst few passes through the data� Any residual interference in u is inaudible�

�The learning rate is de�ned as the proportionality constant in 
��
�
��
 and 
�	
�
��
�
�This took on the order of � minutes on a Sparc���� Two hundred data points were

presented at a time in a �batch�� then the weights were changed with a learning rate of ����
based on the sum of the ��� accumulated �w�s�
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This �gure contains speech waveforms
arranged in � columns� the original
waveforms� the mixed signals� and the
unmixed signals� The postscript of

this �gure is �MB� hence its
omission from this electronic version�

Figure �� A �� � information maximisation network performed blind separa	
tion� learning the unmixing matrix W� The outputs� u� are shown here un	
squashed by the sigmoid� They can be visually matched to their corresponding
sources� s� even though their order was di�erent and some 
for example u��
were recovered as negative 
upside down��

This is re�ected in the permutation structure of the matrixWA�

WA �

�
��������

	���� ���� ���� ����� �����

���� 	���� ���� ���� �����

���� ����� ����� ����� 	����

���� ���� ���� ���� ����

����� ���� 	���� ����� ����
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���

As can be seen� only one substantial entry 
boxed� exists in each row and
column� The interference was attenuated by between �� and ��dB in all cases�
and the system was continuing to improve slowly with a learning rate of �������

In our most ambitious attempt� ten sources 
six speakers� rock music� rau	
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cous laughter� a gong and the Hallelujah chorus� were successfully separated�
though the �ne tuning of the solution took many hours and required some
annealing of the learning rate 
lowering it with time�� For two sources� conver	
gence is normally achieved in less than one pass through the data 
������ data
points�� and on a Sparc	�� on	line learning can occur at twice the speed at
which the sounds themselves are played� Real	time separation for more than�
say� � sources� may require further work to speed convergence� or special	
purpose hardware�

In all our attempts at blind separation� the algorithm has only failed under
two conditions�

�� when more than one of the sources were gaussian white noise� and

�� when the mixing matrix� A was almost singular�

Both are understandable� Firstly� no procedure can separate out independent
gaussian sources since the sum of two gaussian variables has itself a gaussian
distribution� Secondly� ifA is almost singular� then any unmixingW must also
be almost singular� making the learning in 
��� quite unstable in the vicinity
of a solution�

In contrast with these results� our experience with tests on the H	J network
of Jutten � Herault 
����� has been that it occasionally fails to converge for
two sources and only rarely converges for three� on the same speech and music
signals we used for separating ten sources� Cohen � Andreou 
����� report
separation of up to six sinusoidal signals of di�erent frequencies using analog
VLSI H	J networks� In addition� in Cohen � Andreou 
������ they report
results with mixed sine waves and noise in �x� networks� but no separation
results for more than two speakers�

How does convergence time scale with the number of sources� N# The dif	
�culty in answering this question is that di�erent learning rates are required
for di�erent N and for di�erent stages of convergence� We expect to address
this issue in future work� and employ useful heuristic or explicit �nd order
techniques 
Battiti ����� to speed convergence� For now� we present rough
estimates for the number of epochs 
each containing ������ data vectors� re	
quired to reach an average signal to noise ratio on the ouput channels of ��dB�
At such a level� approximately ��$ of the each output channel amplitude is
devoted to one signal� These results were collected for mixing matrices of unit
determinant� so that convergence would not be hampered by having to �nd
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an unmixing matrix with especially large entries� Therefore these convergence
times may be lower than for randomly	generated matrices� The batch size� B�
was in each case� ���

The average numbers of epochs to convergence 
over �� trials� and the
computer times consumed per epoch 
on a Sparc	��� are given in the following
table�

no� of sources� N � � � � � � � � ��
learning rate ��� ��� ��� ���� ���� ����� ����� ����� ������

epochs to convergence �� �� ���� ��� ��� ��� ���� ���� ����
time in secs�%epoch ���� ���� ���� ���� ���� ���� ���� ���� ����

��� Blind deconvolution results

Speech signals were convolved with various �lters and the learning rules in

��� and 
��� were used to perform blind deconvolution� Some results are
shown in Fig��� The convolving �lters generally contained some zero values�
For example� �e is the �lter �������������� In addition� the taps were sometimes
adjacent to each other �a	d and sometimes spaced out in time �i	l� The �leading
weight� of each �lter is the rightmost bar in each histogram�

For each of the three experiments shown in Fig��� we display the convolving
�lter� a
t�� the truncated inverting �lter� wideal
t�� the �lter produced by our
algorithm� w
t�� and the convolution of w
t� and a
t�� The latter should be
a delta	function 
ie� consist of only a single high value� at the position of the
leading weight� if w
t� correctly inverts a
t��

The �rst example� Fig��a	d� shows what happens when one tries to �de	
convolve� a speech signal that has not actually been corrupted 
�lter a
t� is
a delta function�� If the tap spacing is close enough� 
in this case� as close
as the samples�� the algorithm learns a whitening �lter �c which �attens the
amplitude spectrum of the speech right up to the Nyquist limit� the frequency
corresponding to half the sampling rate� The spectra before and after such
�deconvolution� are shown in Fig��� Whitened speech sounds like a clear sharp
version of the original signal since the phase structure is preserved� Using
all available frequency levels equally is another example of maximising the
information throughput of a channel�

This shows that when the original signal is not white� we may recover a
whitened version of it� rather than the exact original� However� when the taps

��



4 5 6

-1

5

1 3 4 6 9 10 11

-4

4

1 4 7 10 13 16 19 22

1

6

-0.75

1

1 9

-0.75

1

15

1

15

1

2 5 7 9 11 13 15

-10

10

2 5 7 9 11 13 15

-10

10

WHITENING BARREL  EFFECT MANY ECHOEStask

no. of
taps

tap

15 25 30

spacing
1 ( = 0.125ms) 10 ( = 1.25ms) 100 ( = 12.5ms)

learnt
deconvolv-
ing filter
‘w’

ideal
deconvolv-
ing filter
‘w       ’ideal

convolving
filter
‘a’

w * a

(a) 0.8

1

(e) (i)

(b) (f) (j)

(c) (g)

6 8

-4

4 (k)

(d) (h)

2 6 7 8

4 (l)

Figure �� Blind deconvolution results� 
a�e�i� Filters used to convolve speech
signals� 
b�f�j� their inverses� 
c�g�k� deconvolving �lters learnt by the algo	
rithm� and 
d�h�l� convolution of the convolving and deconvolving �lters� See
text for further explanation�

are spaced out further� as in �e	l� there is less opportunity for simple whitening�
In the second example� �e� a ���� ms echo is added to the signal� This

creates a mild audible �barrel e�ect�	 Because �lter �e is �nite in length� its
inverse� �f� is in�nite in length� shown here truncated� The inverting �lter
learnt in �g resembles it� though the resemblance tails o� towards the left
since we are really learning an optimal �lter of �nite length� not a truncated
in�nite �lter� The resulting deconvolution� �h� is quite good�

The cleanest results� though� come when the ideal deconvolving �lter is of

�An example of the barrel e�ect are the acoustic echoes heard when someone talks into
a �speaker�phone��
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Figure �� Amplitude spectra of a speech signal 
a� before and 
b� after the
�whitening� performed in Fig��c�

�nite length� as in our third example� A set of exponentially decaying echoes
spread out over ��� ms� �i� may be inverted by a two	point �lter� �j� with
a small decaying correction on its left� an artifact of the truncation of the
convolving �lter �i� As seen in �k� the learnt �lter corresponds almost exactly
to the ideal one� and the deconvolution in �l is almost perfect� This result shows
the sensitivity of the learning algorithm in cases where the tap	spacing is great
enough 
���� ms� that simple whitening does not interfere noticeably with the
deconvolution process� The deconvolution result� in this case� represents an
improvement of the signal	to	noise ratio from 	��dB to ��dB� In all cases�
convergence was relatively rapid� with these solutions being produced after on
the order of ������ data points were presented� which amounts to � seconds
training on � seconds of speech� amounting to four times as fast as real	time
on a Sparc	���

��� Combining separation and deconvolution

The blind separation rules in 
��� and 
��� and the blind deconvolution rules
in 
��� and 
��� can be easily combined� The objective then becomes the max	
imisation of the log of a Jacobian with local lower triangular structure� This
yields exactly the learning rule one would expect� the leading weights in the
�lters follow the blind separation rules and all the others follow a decorrelation
rule similar to 
��� except that now there are tapped weights wikj between an
input xj
t� k� and an output yi
t��
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We have performed experiments with speech signals in which signals have
been simultaneously separated and deconvolved using these rules� We used
mixtures of two signals with convolution �lters like those in �e and �i� and
convergence to separated� deconvolved speech was almost perfect�

� Discussion

We will consider these techniques �rstly in the context of previous information
theoretic approaches within neural networks� and then in the context of related
approaches to �blind� signal processing problems�

��� Comparison with previous work on information

maximisation

Many authors have formulated optimality criteria similar to ours� for both
neural networks and sensory systems 
Barlow ����� Atick ����� Bialek� Ru	
derman � Zee ������ However� our work is most similar to that of Linsker�
who in ���� proposed an �infomax� principle for linear mappings with various
forms of noise� Linsker 
����� derived a learning algorithm for maximising the
mutual information between two layers of a network� This �infomax� criterion
is the same as ours �see eq�
���� However� the problem as formulated here is
di�erent in the following respects�

�� There is no noise� or rather� there is no noise model in this system�

�� There is no assumption that inputs or outputs have gaussian statistics�

�� The transfer function is in general non	linear�

These di�erences lead to quite a di�erent learning rule� Linsker�s ���� rule uses

for input signal X and output Y � a Hebbian term to maximise H
Y � when
the network receives both signal and noise� an anti	Hebbian term to minimise
H
Y jX� when the system receives only noise� and an anti	Hebbian lateral
interaction to decorrelate the outputs Y � When the network is deterministic�
however� theH
Y jX� term does not contribute� A deterministic linear network
can increase its information throughput without bound� as the �WT ��� term
in 
��� suggests�
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However� the information capacity in the networks we have considered is

bounded� not by noise� but by the saturation of a squashing function� Our
network shares with Linsker�s the property that this bound gives rise to an
anti	Hebbian term in the learning rule� This is true for various squashing
functions 
see the table in the Appendix��

This non	linear� non	gaussian� deterministic formulation of the �infomax�
problem leads to more powerful algorithms� since� as demonstrated� the non	
linear function enables the network to compute with non	gaussian statistics�
and �nd higher	order forms of redundancy inherent in the inputs� 
As empha	
sised in section �� linear approaches are inadequate for solving the problems of
blind separation and blind deconvolution�� These observations also apply to
the approaches of Atick � Redlich 
����� and Bialek� Ruderman � Zee 
������

The problem of information maximisation through non	linear sigmoidal
neurons has been considered before without a learning rule actually being
proposed� Schraudolph et al 
������ in work that inspired this approach� con	
sidered it as a method for initialising weights in a neural network� Before this�
Laughlin 
����� used it to characterise as optimal� the exact contrast sensitiv	
ity curves of interneurons in the insect�s compound eye� Various other authors
have considered unsupervised learning rules for non	linear units� without justi	
fying them in terms of information theory 
see Karhunen � Joutsensalo �����
and references therein��

Several recent papers� however� have touched closely on the work presented
in this paper� Deco � Brauer 
����� use cumulant expansions to approximate
mutual information between outputs� Parra � Deco 
����� use symplectic
transforms to train non�linear information	preserving mappings� Most no	
tably� Baram � Roth 
����� perform substantially the same analysis as ours�
but apply their networks to probability density estimation and time series fore	
casting� None of this work was known to us when we developed our approach�

Finally� another group of information theoretic algorithms have been pro	
posed by Becker � Hinton 
������ These employ non	linear networks to max�

imise mutual information between di�erent sets of outputs� This increasing

of redundancy enables the network to discover invariants in separate groups
of inputs 
see also Schraudolph � Sejnowski ������ This is� in a sense� the
opposite of our objective� though some way may be found to view the two in
the same light�
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��� Comparison with previous work on blind separa�

tion

As indicated in section �� approaches to blind separation and blind deconvolu	
tion have divided into those using non	linear functions 
Jutten � Herault �����
Bellini ����� and those using explicit calculations of cumulants and polyspectra

Comon ����� Hatzinakos � Nikias ������ We have shown that an information
maximisation approach can provide a theoretical framework for approaches of
the former type�

In the case of blind separation� the architecture of our N � N network�
although it is a feedforward network� maps directly onto that of the recurrent
Herault	Jutten network� The relationship between our weight matrix�W� and
the H	J recurrent weight matrix�WHJ � can be written as� W � 
I�WHJ����
where I is the identity matrix� From this we may write

�WHJ � �


W��

�
�


W��

�
�W



W��

�

���

so that our learning rule� 
���� forms part of a rule for the recurrent H	J
network� Unfortunately� this rule is complex and not obviously related to the
non	linear anti	Hebbian rule proposed for the H	J net�

�WHJ � �g
u�h
u�T 
���

where g and h are odd non	linear functions� It remains to conduct a detailed
performance comparison between 
��� and the algorithm presented here� We
have performed many simulations in which the H	J net failed to converge� but
because there is substantial freedom in the choice of g and h in 
���� we cannot
be sure that our choices were good ones�

We now compare the convergence criteria of the two algorithms in order to
show how they are related� The explanation 
Jutten � Herault ����� for the
success of the H	J network is that the Taylor series expansion of g
u�h
u�T in

��� yields odd cross moments� such that the weights stop changing when�

X
i�j

bijpqhu�p��i u�q��j i � � 
���

for all output unit pairs i �� j� for p� q � �� �� �� � � � �� and for the coe�cients
bijpq coming from the Taylor series expansion of g and h� This� they argue�
provides an �approximation of an independence test��
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This can be compared with the convergence criterion of our algorithm� For
the tanh non	linearity� we derive�

�W �
h
WT

i�� � �yxT 
���

This converges in the mean when 
ignoring bias weights and assuming x to be
zero mean�� h

WT
i��

� �htanh
Wx�xTi� 
���

This condition can be readily rewritten 
multiplying in by WT and using
u �Wx� as�

I � �htanh
u�uT i� 
���

Since tanh is an odd function� its series expansion is of the form tanh
u� �P
j bju

�p��� the bj being coe�cients� and thus the convergence criterion 
���
amounts to the condition X

i�j

bijphu�p��i uji � � 
���

for all output unit pairs i �� j� for p � �� �� �� � � � �� and for the coe�cients bijp
coming from the Taylor series expansion of the tanh function�

The convergence criterion 
��� involves fewer cross moments than that of

��� and in this sense� may be viewed as a less restrictive condition� More
relevant� however� is the fact that the weighting� or relative importance� bijp�
of the moments in 
��� is determined by the information theoretic objective
function in conjunction with the non	linear function g� while in 
���� the bijpq
values are accidents of the particular non	linear functions� g and h� that we
choose� These observations may help to explain the existence of spurious solu	
tions for H	J� as revealed� for example� in the stability analysis of Sorouchyari

������

Several other approaches to blind separation exist� Comon 
����� expands
the mutual information in terms of cumulants up to order �� amounting to
a truncation of the constraints in 
���� A similar proposal which combines
separation with deconvolution is to be found in Yellin � Weinstein 
������
Such cumulant	based methods seem to work� though they are complex� It is
not clear how the truncation of the expansion a�ects the solution� In addition�
Molgedey � Schuster 
����� have proposed a novel technique that uses time
delayed correlations to constrain the solution� Finally� Hop�eld 
����� has
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applied a variant of the H	J architecture to odor separation in a model of the
olfactory bulb�

��� Comparison with previous work on blind deconvo�

lution

In the case of blind deconvolution� our approach most resembles the �Bussgang�
family of techniques 
Bellini ����� Haykin ������ These algorithms assume
some knowledge about the input distributions in order to sculpt a non	linearity
which may be used in the creation of a memoryless conditional estimator for
the input signal� In our notation� the non	linearly transformed output� y� is
exactly this conditional estimator�

y � g
u� � E�sju� 
���

and the goal of the system is to change weights until u� the actual output is
the same as y� our estimate of s� An error is thus de�ned� error � y � u�
and a stochastic weight update rule follows directly from gradient descent in
mean	squared error� This gives the blind deconvolution rule for a tapped delay
weight at time t �compare with 
�����

�wL�j
t� � xt�j
yt � ut� 
���

If g
u� � tanh
u� then this rule is very similar to 
���� The only di�erence is
that 
��� contains the term tanh
u� where 
��� has the term u� tanh
u�� but
as can be easily veri�ed� these terms are of the same sign at all times� so the
algorithms should behave similarly�

The theoretical justi�cations for the Bussgang approaches are� however� a
little obscure� and� as with the Herault	Jutten rules� part of their appeal derives
from the fact that they have been shown to work in many circumstances� The
primary di�culty lies in the consideration� 
���� of y as a conditional estimator
for s� Why� a priori� should we consider a non	linearly transformed output to
be a conditional estimator for the unconvolved input# The answer comes from
Bayesian considerations� The output� u� is considered to be a noisy version of
the original signal� s� Models of the pdf�s of the original signal and this noise
are then constructed� and Bayesian reasoning yields a non	linear conditional
estimator of s from u� which can be quite complex �see 
������ in Haykin ������
It is not clear� however� that the �noise� introduced by the convolving �lter� a�

��



is well	modelled as gaussian� Nor will we generally have justi�able estimates
of its mean and variance� and how they compare with the means and variances
of the input� s�

In short� the selection of a non	linearity� g� is a black art� Haykin does
note� though� that in the limit of high convolutional noise� g� can be well
approximated by the tanh sigmoid non	linearity �
������ in Haykin ������ ex	
actly the non	linearity we have been using� Could it be that the success of the
Bussgang approaches using Bayesian conditional estimators are due less to the
exact form of the conditional estimator than to the general goal of squeezing
as much information as possible through a sigmoid function# As noted� a sim	
ilarity exists between the information maximisation rule 
���� derived without
any Bayesian modelling� and the Bussgang rule 
��� when convolutional noise
levels are high� This suggests that the higher	order moments and information
maximisation properties may be the important factors in blind deconvolution�
rather than the minimisation of a contrived error measure� and its justi�cation
in terms of estimation theory�

Finally� we note that the idea of using a variable	slope sigmoid function for
blind deconvolution was �rst described in Haykin 
������

��� Conclusion

In their current forms� the algorithms presented here are limited� Firstly� since
only single layer networks are used� the optimal mappings discovered are con	
strained to be linear� while some multi	layer system could be more powerful�
With layers of hidden units� the Jacobian in 
��� becomes more complicated�
as do the learning rules derived from it� Secondly� the networks require� for
N inputs� that there be N outputs� which makes them unable to perform
the computationally useful tasks of dimensionality reduction or optimal data
compression� Thirdly� realistic acoustic environments are characterised by sub	
stantial propagation delays� As a result� blind separation techniques without
adaptive time delays do not work for speech recorded in a natural environ	
ment� An approach to this problem using �beamforming� may be found in 
Li
� Sejnowski ������ Fourthly� no account has yet been given for cases where
there is known noise in the inputs� The beginning of such an analysis may be
found in Nadal � Parga 
������ and Schuster 
����� and it may be possible
to de�ne learning rules for such cases�

Finally� and most seriously from a biological point of view� the learning rule

��



in equation 
��� is decidedly non	local� Each �neuron� must know the cofactors
either of all the weights entering it� or all those leaving it� Some architectural
trick may be found which enables information maximisation to take place
using only local information� The existence of local learning rules such as the
H	J network� suggests that it may be possible to develop local learning rules
approximating the non	local ones derived here� For now� however� the network
learning rule in 
��� remains unbiological�

Despite these concerns� we believe that the information maximisation ap	
proach presented here could serve as a unifying framework that brings together
several lines of research� and as a guiding principle for further advances� The
principles may also be applied to other sensory modalities such as vision� where
Field 
����� has recently argued that phase	insensitive information maximisa	
tion 
using only second order statistics� is unable to predict local 
non	Fourier�
receptive �elds�

Appendix � proof of learning rule 	��


Consider a network with an input vector x� a weight matrix W� a bias vector
w� and a non	linearly transformed output vector y � g
u�� u � Wx � w��
ProvidingW is a square matrix and g is an invertible function� the multivariate
probability density function of y can be written 
Papoulis� eq� �	����

fy
y� �
fx
x�

jJ j 
���

where jJ j is the absolute value of the Jacobian of the transformation� This
simpli�es to the product of the determinant of the weight matrix and the
derivatives� y�i� of the outputs� yi� with respect to their net inputs�

J � 
detW�
NY
i��

y�i 
���

For example� in the case where the non	linearity is the logistic sigmoid�

yi �
�

� � e�ui
and y�i �

�yi
�ui

� yi
� � yi�� 
���

We can perform gradient ascent in the information that the outputs trans	
mit about inputs by noting that the information gradient is the same as the

��



entropy gradient 
�� for invertible deterministic mappings� The joint entropy
of the outputs is�

H
y� � �E�lnfy
y�� 
���

� E�ln jJ j�� E�ln fx
x�� from 
��� 
���

Weights can be adjusted to maximise H
y�� As before� they only a�ect the
E�ln jJ j� term above� and thus� substituting 
��� into 
����

�W � �H

�W
�

�

�W
ln jJ j � �

�W
ln jdetWj� �

�W
ln
Y
i

jy�ij 
���

The �rst term is the same regardless of the transfer function� and since detW �P
j wij cof wij for any row i� 
cof wij being the cofactor of wij�� we have� for a

single weight�
�

�wij

ln jdetWj � cofwij

detW

���

For the full weight matrix� we use the de�nition of the inverse of a matrix�
and the fact that the adjoint matrix� adjW� is the transpose of the matrix of
cofactors� This gives�

�

�W
ln jdetWj � 
adjW�T

detW
�
h
WT

i��

���

For the second term in 
���� we note that the product� ln
Q

i y
�
i� splits up

into a sum of log	terms� only one of which depends on a particular wij� The
calculation of this dependency proceeds as in the one unit case of 
�� and 
���
Di�erent squashing functions give di�erent forms of anti	Hebbian terms� Some
examples are given in Table ��

Thus� for units computing weighted sums� the information	maximisation
rule consists of an anti�redundancy term which always has the form of 
����
and an anti�Hebb term which keeps the unit from saturating�

Several points are worth noting in Table ��

�� The logistic 
A� and tanh 
B� functions produce anti	Hebb terms which
use higher	order statistics� The other functions use the net input ui as
their output variable� rather than the actual� non	linearly transformed
output yi� Tests have shown the erf function 
D� to be unsuitable for
blind separation problems� In fact� it can be shown to converge in the
mean when �compare with 
����� I � �huuT i� showing clearly that it is
just a decorrelator�

��



�� The generalised cumulative gaussian function 
E� has a variable expo	
nent� r� This can be varied between � and � to produce squashing
functions suitable for symmetrical input distributions with very high or
low kurtosis� When r is very large� then g
ui� is suitable for unit in	
put distributions such as those in Fig��� When close to zero� it �ts high
kurtosis input distributions� which are peaked with long tails�

�� Analogously� it is possible to de�ne a generalised �tanh� sigmoid 
F�� of
which the hyperbolic tangent 
B� is a special case 
r � ��� The values
of function F can in general only be attained by numerical integration

in both directions� of the di�erential equation� g�
u� � �� jg
u�jr� from
a boundary condition of g
�� � �� Once this is done� however� and the
values are stored in a look	up table� the slope and anti	Hebb terms are
easily evaluated at each presentation� Again� as in section ���� it should
be useful for data which may have �at 
r � �� or peaky 
r � �� pdf�s�

�� The learning rule for a gaussian radial basis function node 
G� shows the
unsuitability of non	monotonic functions for information maximisation
learning� The ui term on the denominator would make such learning
unstable when the net input to the unit was zero�

��



Function � Slope � Anti�Hebb term �

yi � g
ui� y�i �
�yi
�ui

�

�wij

ln jy�ij

A
�

� � e�ui
yi
�� yi� xj
� � �yi�

B tanh
ui� �� y�i ��xjyi

C arctan
ui�
�

� � u�i
� �xjui
� � u�i

D erf
ui�
�p
�
e�ui

� ��xjui

E
R ui
�� e�jvj

r

dv e�juij
r �rxjjuijr��sgn
ui�

F
R ui
��
� � jg
v�jr�dv � � jyijr �rxjjyijr��sgn
yi�

G e�u
�

i ��uiyi xj
� � �u�i
ui

Table �� Di�erent non	linearities� g
ui�� give di�erent slopes and anti	Hebbian
terms that appear when deriving information maximisation rules using eq�
����
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