
Math 6250: The intrinsic gradient.

This extra material accompanies the lecture notes on “Surfaces and the First Fundamental
Form”. This material is assigned for students enrolled in MATH 6250, but is an extra-credit as-
signment for students in MATH 4250.

Recall that a function f : Rn → R has a directional derivative in any direction ~v ∈ Rn given
by the limit

D~vf(~x) = lim
h→0

f(~x+ h~v)− f(~x)
h

.

As we studied in our notes on “The Gradient and Hessian”, if we define the gradient of f at ~x to
be the special vector∇f(~x) = (∂f/∂x1(~x), . . . , ∂f/∂xn(~x)) we have D~vf(~x) = 〈~v,∇f〉.

If the function f(~x) is defined on a curved surface S ⊂ R3, we still want to be able to under-
stand what it means to take directional derivatives of the function. We may assumea that f : S → R
is the restriction of a function f : R3 → R.

Definition. The directional derivativeD~vf(~p) (in R3) at p is a linear function of directions ~v ∈ R3.
The restriction of D~vf(~p) to vectors ~v ∈ TpS is a linear function of directions ~v ∈ TpS. We can
alwaysb write this linear function as

D~vf(~p) = 〈~v,∇f(~p)〉Ip .

for some vector∇f(~p) ∈ TpS. We define this vector to be the intrinsic gradient of f .

What is the formula for∇f? It is important to know it. But it is clearly not as simple as it used
to be for functions defined on Rn. Finding a formula for ∇f will require us to understand the first
fundamental form in some detail, using the theory we’ve developed. This leads us to an answer to
our question “What is differential geometry for?”:

Differential geometry tells you how to do calculus on a curved surface.

Let’s begin. The extrinsic gradient of a differentiable function f : S → R is a differentiable map
∇f : S → R3 which assigns to each point of S a vector∇f(p) ∈ R3 so that

Dfp(~v) = 〈∇f,~v〉R3 .

It’s worth noting that this is the R3 inner product because we wrote the gradient as a 3-vector in
space. Because we’re referring to the “external” space R3, we call this gradient “extrinsic”.

aIn a more advanced course, we prove that if f is a differentiable function defined on a regular surface S ⊂ R3,
we may always extend f to a differentiable function on a neighborhood of S. Further, although this extension is not
unique, the directional derivatives in tangent directions don’t depend on which extension we choose.

bWhen you take an advanced course in linear algebra, you’ll learn that every finite-dimensional vector space V
is isomorphic to its dual space V ∗ of linear maps A : V → R. Further, if V has an inner product 〈−,−〉, every
A : V → R in V ∗ may be written as A(~w) = 〈~v, ~w〉 for a unique ~v ∈ V .



1. (10 points) If E, F , G are the coefficients of the first fundamental form on S, then as a vector
in R3 the extrinsic gradient is

∇f =
fuG− fvF
EG− F 2

~xu +
fvE − fuF
EG− F 2

~xv.

and hence the intrinsic gradient of f at p is

∇f =

(
fuG− fvF
EG− F 2

,
fvE − fuF
EG− F 2

)
.
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2. (10 points) Suppose S is the x-y plane with the parametrizationX(u, v) = (u, v, 0). Compute
the coefficients of the first fundamental form and use the formula above to show that the
intrinsic gradient∇f = (fu, fv).
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3. (10 points) We proved in the “Gradient and Hessian” homework that the gradient vector points
in the direction of largest directional derivative. Let’s prove that the corresponding property
holds for the intrinsic gradient.

Fix a p in S and consider the unit circle |~v| = 1 in Tp(S). Prove that on this circle Dfp(~v) is
maximized ⇐⇒ v = ∇f/|∇f |.
Hint: Parametrize the unit circle by ~v = (cos θ)~xu + (sin θ)~xv and differentiate w.r.t. θ.
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4. (10 points) Consider a level curveC = {p ∈ S : f(p) = c} on S, and suppose that the tangent
vector to C at p is given by TC(p). Prove that 〈∇f(p), TC(p)〉Ip = 0 when p ∈ C; that is, that
∇f is normal to C everywhere, just as it is for the ordinary gradient of a function on Rn.
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