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Abstract

We provide a conjecture stating that the circle is unique as a critical curve for a
version of curve energy from [3] and explore means for a proof involving curve short-
ening flow and some isoperimetric results from [1]. We also provide reason to suspect
the incomplete portion of the proof will be true.

1 Backround

Several articles, including [3], [2], and [4] have explored similar types of knot energies. [4]
proves that for a broad class of these energies, the circle is the global energy minimizer. One
unanswered question is whether there exist any embedded curves in the plane which are local
minimizers for knot energy other than the global minimizer of the circle. We will expore an
element of the class of energies defined by [4] for the case where j = 2 and p = 1.

2 Critical Curves

Conjecture 1. The round circle is the only local minimizer for knot energy.

The proof follows the following structure. Gage demonstrates that under curvature flow,
all sufficiently smooth embeded curves have an isoperimetric ratio approaching that of the
round circle [1]. As the isoperimetric ratio is scale invariant, we can modify the curvature
flow to include a component which rescales to maintain constant length. This flow is thus
a total length preserving flow which evolves any embedded curve to a round circle. We can
examine the Gâteaux derivative of our energy functional under this rescaled curvature flow
for an arbitrary embedded, sufficiently smooth curve. If we can demonstrate that this is less
than or equal to zero with equality if and only if our curve is a round circle, then the rescaled
curvature flow will always immediately decrease the energy of the curve unless our curve is
the round circle. This implies that there cannot be any other critical curves, for they would
be curves for which any small evolution would increase the curve’s energy, but since our flow
always decreases energy, this cannot be. Thus we would be able to conclude that the circle
is the only critical curve for our energy functional.
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3 Definitions

Define:
γ : S1 = R/2πZ → R2

to be a unit speed C2 curve of length 2π embedded in the plane. Abrams, Cantarella,
and Foo’s E1

2 energy of a unit speed, C2 curve γ is defined as [4]:

E1
2 [γ] = 2

∫ 2π

0

∫ π

0

1

|γ(u + s)− γ(u)|2
− 1

s2
ds du

As we are examining the behavior of knot energy under a variational field which does not
maintain unit speed, we require that the energy we use continue to converge as the curve
loses its unit speed parameterization. As E1

2 defined above will diverge for non unit speed
curves, we define knot energy for the purpose of this paper as follows:

E[γ] = 2

∫ 2π

0

∫ π

0

1

|γ(u + s)− γ(u)|2
− 1

|γ′(u)|2s2
ds du

Note that since our curve is initially of unit speed, the curvature is equal to the magnitude
of the second derivative of our curve. We will define our rescaled curvature flow by the
variational field:

→
h= γ′′(u) +

γ(u)
∫ 2π

0
|γ′′(φ)| dφ

2π

4 Computation

The next step is to compute the Gâteaux derivative of knot energy under our rescaled
curvature flow.

E[γ] = 2

∫ 2π

0

∫ π

0

1

|γ(u + s)− γ(u)|2
− 1

|γ′(u)|2s2
ds du (1)

→
h= γ′′(u) +

γ(u)
∫ 2π

0
|γ′′(φ)| dφ

2π

Henceforth we will write

∫
κ2 to mean

∫ 2π

0

|γ′′(φ)| dφ.

Let f(u, s, γ(u + s), γ(u), γ′(u + s), γ′(u)) be the integrand of (1). We can then take the
partial derivative of f with respect to each of these symbolic independent variables to get a
’gradiant’ of f :

Of =

〈
fu, fs,

−2(γ(u + s)− γ(u))

|γ(u + s)− γ(u)|4
,
2(γ(u + s)− γ(u))

|γ(u + s)− γ(u)|4
, 0,

2γ′(u)

|γ′(u)|4s2

〉
and our variational field

→
h as it affects each symbolic independent variable given by:
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↔
h=

〈
0, 0, γ′′(u + s) +

γ(u + s)
∫

κ2

2π
, γ′′(u) +

γ(u)
∫

κ2

2π
, γ′(u + s)t, γ

′′′(u) +
γ′(u)

∫
κ2

2π

〉

Our Gâteaux derivative of knot energy under this flow is given by
∂

∂ε
|ε=0 E1

2 [γ+εh]−E1
2 [γ]

which we can write as 2

∫ 2π

0

∫ π

0

Of ·
↔
h ds du which given a unit speed curve equals:

4

∫ 2π

0

∫ π

0

−1

|γ(u + s)− γ(u)|2

[
〈γ(u + s)− γ(u), γ′′(u + s)− γ′′(u)〉

|γ(u + s)− γ(u)|2
+

∫
κ2

2π

]
ds du (2)

It remains to be shown, and in fact we fail to prove that this quantity is always less than
or equal to zero with equality if and only if γ(u) is in fact the round circle. This is the one step
missing from proving the conjecture. If it is true, it would mean that given any unit speed
embedded curve in the plane, its evolution according to rescaled curve-shortening flow would
always immediately decrease knot energy. Since any critical curve which locally minimizes
knot energy would have no evolution that immediately decreases energy, this would imply
that there are no such critical curves other than the circle.

It is however worthwhile to demonstrate that this expression equals zero for the unit
circle, that it converges for all sufficiently smooth curves, and examine how the various
terms behave to provide reason to suspect that (2) is less than or equal to zero for all curves.

5 The Circle

Let us define:
γ : S1 = R/2πZ → R2

given by:

γ(u) =

(
cos(u)

sin(u)

)
First note that for the unit circle as we have defined it here, γ′′(u) = −γ(u). If we make

this one substitution into (2) we get the following:

4

∫ 2π

0

∫ π

0

−1

|γ(u + s)− γ(u)|2

[
〈γ(u + s)− γ(u),−(γ(u + s)− γ(u))〉

|γ(u + s)− γ(u)|2
+

∫
κ2

2π

]
ds du

The affected quotient simplifies to −1. Note also that as κ(φ)2 = |γ′′(φ)|2 = 1, we have∫
κ2 = 2π and the difference within brackets in 2 reduces to zero for all s and u. Thus,

as expected, the rescaled curve shortening flow does not change the knot energy of the unit
circle.

3



Figure 1: Supposing that two points both lie along a continuous section of circle arc allows
us to greatly simplify (2)

6 Convergence

It is natural to look at (2) with some skepticism as at first glance, it would appear to
be in great danger of diverging. For small s we have |γ(u + s) − γ(u)|2 behaving like

s2. Thus we would seem to be in danger of our
−1

|γ(u + s)− γ(u)|2
term blowing up faster

than the subsequent term can compensate. To evaluate this behavior, let us examine as
s is integrated from 0 to some small ε > 0. For small s we can approximate any section
of γ(u) by a circle arc with constant curvature equal to |γ′′(u)|. For this calculation, let
κu = |γ′′(u)|. The circle arc we are approximating γ with has radius R = 1/κu, and so the
angle subtended by the arclength s is sκu. See Figure. This is the angle between γ′′(u)
and γ′′(u + s), each with magnitude κu. The difference between γ′′(u) and γ′′(u + s) is of
magnitude 2κu sin(sκu/2). By a similar argument, we can derive the chord between γ(u) and
γ(u+ s) to be of magnitude (2/κu) sin(sκu/2). By symmetry, both γ′′(u) and γ′′(u+ s) have
the same component perpendicular to the chord, and so γ(u+s)−γ(u) and γ′′(u+s)−γ′′(u)
are parallel. We can see in the diagram that they point in opposite directions, however, and
so

〈γ(u + s)− γ(u), γ′′(u + s)− γ′′(u)〉 = −4 sin2
(sκu

2

)
and

|γ(u + s)− γ(u)|2 =

(
4

κ2
u

)
sin2

(sκu

2

)
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substituting into (2) and simplifying we have

4

∫ 2π

0

∫ ε

0

−κ2
u

4 sin2 (sκu/2)

[
−κ2

u +

∫
κ2

2π

]
ds du (3)

A first order approximation of sin(x) ≈ x yields

4

∫ 2π

0

∫ ε

0

−1

s2

[
−κ2

u +

∫
κ2

2π

]
ds du

which separates into

4

(∫ 2π

0

−κ2
u du +

∫
κ2

2π

∫ 2π

0

du

) ∫ ε

0

−1

s2
ds (4)

From (4) we can see that for small s, the integral evaluates to zero, and thus our first
variation converges as desired.

7 Boundedness

It will remain to be proven that (2) is indeed less than or equal to zero for all appropriate
curves with equality if and only if our curve is the unit circle. However examining certain
local behavior, we can come to a very strong suspicion that this inequality will in fact
hold. Unfortunately, an attempt to satisfy the inequality pointwise will fail, as the following
circumstance will demonstrate. First note that the approximations we made to arrive at (3)
assumed only that γ(u) and γ(u + s) both lie on the same circle arc. Also note that if the
term in brackets is always greater than zero, then the integrand evaluates to be less than zero

as desired.

∫
κ2 is a constant for the curve and is at least equal to one. If we have a curve

with a section of circle arc with |γ′′(u)| > 1 then we could have a point where the integrand
evaluates to be greater than zero. However, a curve having a section with |γ′′(u)| > 1 will

also inflate

∫
κ2, so it is also possible that this is not a problem. Unfortunately, the curves

we care about are not constant curvature curves, and thus the integral will not simplify as
nicely for all possibilities.

7.1 Bending Energy

Let us examine

∫
κ2, which has also been referred to as bending energy, to better understand

its behavior for different curves. For our curve γ let us explore the arclength parameterized
signed curvature function

κ : R/2πZ → R

As Exner reminds us, κ(t) provides enough information to define our curve γ up to Euclidean
transformations, translation and rotation. Thus it is sufficient to work with κ(t) as (2) is
independent of Euclidean transformations. For any closed, embedded, C2 curve, we will
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have

∫ 2π

0

κ(t) dt = 2π. Instead of working directly with κ(t), let us work with κ0(t) which

we define to be equal to κ(t) − 1. Notice that

∫ 2π

0

κ0(t) dt = 0. With an appropriate

substitution, we find that

∫ 2π

0

κ(t)2 dt = 2π+

∫ 2π

0

κ0(t)
2 dt, thus proving the earlier assertion

that

∫
κ2 ≥ 2π, and demonstrating that there is equality if and only if our curve is the circle,

the only curve with κ0(t) = 0.

7.2 A pointwise argument

Let us concentrate on the term of (2) in brackets:

〈γ(u + s)− γ(u), γ′′(u + s)− γ′′(u)〉
|γ(u + s)− γ(u)|2

+

∫
κ2

2π
(5)

If this is greater than or equal to zero for all t ∈ [0, 2π] and s ∈ [0, π] then (2) will evaluate
to be less than or equal to zero for all appropriate curves, as desired.

Recall that for s, t on a circle arc, we showed in a previous section that

〈γ(u + s)− γ(u), γ′′(u + s)− γ′′(u)〉
|γ(u + s)− γ(u)|2

= −κ(t)2

Suppose we have two points on our curve, γ(t) and γ(t + s) such that they both lie along a
continuous circle arc of curvature greater than one. We then must examine the least possible

amount by which

∫
κ2 must increase in order to see if we can build a pointwise violation,

or show that one does not present itselt. From t to t + s we have κ0 equals some constant,

call it κ1. In order to minimize

∫
κ2 restricted to

∫ 2π

0

κ0(t) dt = 0 then κ0 must be equal

to
−sκ1

2π − s
elsewhere. As a result, (5) evaluates to

sκ2
1 +

s2κ2
1

2π − s
− 2πκ2

1 − 4πκ1

Unfortunately, we see that plugging in s = π yields (1 − π)κ2
1 − 4πκ1, which given κ1 > 0

yields a negative result. This however, does not doom our result. While the class of curves
we constructed did satisfy some of the restrictions on the types of curves we care about,
they actually are not closed, and thus the only result we can take from this approximation is
that the approximation is not good enough. It is likely that the restrictions Exner places on
the variation of his curvature function will turn out to be exactly the restriction we would
like to place on our κ0(t) function in order to be sure we are defining an appropriate curve.
Using that restriction and thus a Fourier series to define κ0(t) it is possible that (5) will be
positive for all appropriate s and t, bounding (2) pointwise as we would like. Alternatively,
(2) might not be boundable in a pointwise fashion, yet still hold in which case some other
technique will be needed to evaluate the expression over some arbitrary curve.

6



References

[1] M. Gage: An Isoperimetric Inequality With Applications to Curve Shortening, Duke
Mathematical Journal, 50 (1983), 1225-1229.

[2] J. O’Hara: Energy of a Knot, Topology, 30 (1991), 241-247.
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