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CHAPTER m
ROTATION GROUPS

This chapter provides an introduetion to the theory of groups, 
illustrated by the symmetry groups of the Platonic solids. We 
shall find coordinates for the vertices of these solids, and examine 
the cases where one can be inscribed in another. Finally, we shall 
see that every finite group of displacements is the group of rota­
tional symmetry operations of a regular polygon or polyhedron.

31. Congruent transformations. Two figures are said to be 
congruent if the distances between corresponding pairs of points 
are equal, in which case the angles between corresponding pairs 
of lines are likewise equal. In particular, two trihedra (or tri­
hedral solid angles) are congruent if the three face-angles of one 
are equal to respective face-angles of the other. Two such trihedra 
are said to be directly congruent (or “ superposable ”) if they 
have the same sense (right- or left-handed), but enantiomorphous 
if they have opposite senses. The same distinction can be applied 
to figures of any kind, by the following device.

Any point P is located with reference to a given trihedron by 
its (oblique) Cartesian coordinates x, y, z. Let P' be the point 
whose coordinates, referred to a eongruent trihedron, are the 
same x, y, z. If we suppose the two trihedra to be fixed, every 
P determines a unique P', and vice versa. This correspondence 
is called a congruent transformation, P' being the transform of P. 
If another point Q is transformed into Q', we have a definite 
formula for the distance PQ in terms of the coordinates, which 
shows that P'Q'=PQ. In other words, a congruent transformation 
is a point-to-point correspondence preserving distance. It is said 
to be direct or opposite according as the two trihedra are directly 
congruent or enantiomorphous, i.e., according as the transforma­
tion preserves or reverses sense. Hence the product (resultant) 
of two direct or two opposite transformations is direct, whereas 
the product of a direct transformation and an opposite transforma­
tion (in either order) is opposite. (In fact, the composition of 
direct and opposite transformations resembles the multiphcation 
of positive and negative numbers, or the addition of even and odd 
numbers.) A direct transformation is often called a displacement,
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34 REGULAR POLYTOPES

as it can be achieved by a rigid motion. Any two congruent 
figures are related by a congruent transformation, direct or 
opposite. Two identical left shoes are directly congruent; a pair 
of shoes are enantiomorphous. (Some authors use the words 
“ congruent ” and “ symmetric ” where we use “ directly con­
gruent ” and “ enantiomorphous ”.)

We shall find that all congruent transformations can be derived 
from three “ primitive ” transformations; translation (in a 
certain direction, through a certain distance), rotation (about a 
certain line or axis, through a certain angle), and reflection (in a 
certain plane). Evidently the first two are direct, while the third 
is opposite.

There is an analogous theory in space of any number of dimen­
sions. In two dimensions we rotate about a point, reflect in a 
line, and a congruent transformation is defined in terms of two 
congruent angles. In one dimension we reflect in a point, and

[§ 3-1

Reflection (opposite) Translation (direct)
Fig. 31a

a congruent transformation is defined in terms of two rays (or 
“ half lines ”). In this simplest case, if any point 0 is left in­
variant, the transformation is the reflection in 0, unless it is 
merely the identity (which leaves every point invariant) ; but if 
there is no invariant point, it is a translation, i.e., the product 
of reflections in two points (0 and Q, in Fig. 3-1a).

In two dimensions, a congruent transformation that leaves a 
point 0 invariant is either a reflection or a rotation (according as 
it is opposite or direct). For, the transformation from an angle 
XOY to a congruent angle X'OY' (Fig. 3-1b) can be achieved as 
follows. By reflection in the bisector of ZXOX', Z_X0Y is trans­
formed into ZX'OYi. Since this is congruent to /.X'OY', the ray 
OY' either coincides with OY^ or is its image by reflection in OX'. 
In the former case the one reflection suffices ; in the latter, it has 
to be combined with the reflection in OX', and the product is the 
rotation through ZlXOX' (which is twice the angle between the 
two reflecting lines).

In particular, the product of reflections in two perpendicular 
lines is a rotation through n or half-turn. In this single case, it
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is immaterial which reflection is performed first; in other words, 
two reflections commute if their lines are perpendicular. It is 
important to notice that the half-turn about 0 is the product of 
reflections in any two perpendicular lines through 0.

A plane congruent transformation without any invariant point 
is the product of two or three reflections (according as it is direct 
or opposite). For, in transforming an angle XOY into a congruent 
angle X'O'Y', we can begin by reflecting in the perpendicular 
bisector of 00', and then use one or two further reflections, as 
above.

The product of two reflections is a translation or a rotation.

Reflection (opposite) Rotation (direct)
Fig. 3-1b

according as the reflecting lines are parallel or intersect. Hence 
every plane displacement is either a translation or a rotation*

In the product of three reflections, we can always arrange that 
one of the reflecting lines shall be perpendicular to both the others. 
The following is perhaps not the simplest proof, but it is one that 
generahzes easily to any number of dimensions. If we regard a 
congruent transformation as operating on pencils of parallel rays 
(instead of operating on points), we can say that a translation 
has no effect: it leaves every pencil invariant. Since each pencil 
can be represented by that one of its rays which passes through a 
fixed point 0, any congruent transformation gives rise to an 
“ induced ” congruent transformation operating on the rays that 
emanate from 0 : congruent because of the preservation of angles.

If the given transformation is opposite, so is the induced
Kelvin and Tait 1, p. 60.
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transformation. But the latter, leaving 0 invariant, can only 
be a reflection, say the reflection in OQ. This leaves 0 and Q 
invariant; therefore the given transformation leaves the direction 
OQ invariant. Consider the product of the given transformation 
with the reflection in any line, p, perpendicular to OQ. This is 
a direct transformation which reverses the direction OQ; i.e., 
it is a half-turn. Hence the given transformation is the product 
of a half-turn with the reflection in p. But the half-turn is the 
product of reflections in two perpendicular lines, which may be 
chosen perpendicular and parallel to p. Thus we have altogether 
three reflections, of which the last two can be combined to form 
a translation. The general opposite transformation is now reduced 
to the product of a reflection and a translation which commute, 
the reflecting bne being in the direction of the translation. This 
kind of transformation is called a glide-reflection.

In three dimensions, a congruent transformation that leaves a 
point 0 invariant is the product of at most three reflections : one 
to bring together the two a:-axes, another for the ^-axes, and a 
third (if necessary) for the z-axes. Since one further reflection 
will suffice to bring together two different origins (i.e., the vertices 
of the two congruent trihedra),

3T1. Every congruent transformation is the product of at most 
four reflections.

Since the product of two opposite transformations is direct, a 
product of reflections is direct or opposite according as the number 
of reflections is even or odd. Hence every direct transformation 
is the product of two or four reflections, and every opposite 
transformation is either a single reflection or a product of 
three.

The product of reflections in two parallel planes is a translation 
in the perpendicular direction through twice the distance between 
the planes, and the product of reflections in two intersecting 
planes is a rotation about the line of intersection through twice 
the angle between them. Two reflections commute if their planes 
are perpendicular, in which case their product is a half-turn (or 
“ reflection in a line ”).

Since the product of three reflections is opposite, a direct 
transformation with an invariant point 0 can only be the product 
of reflections in two planes through 0, i.e., a rotation. Thus

[§ 31
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3-12. Every displacement leaving one point invariant is a 
rotation*

Consequently the product of two rotations with intersecting 
axes is another rotation.

The three “primitive” transformations (viz., translation, 
rotation, and reflection), taken in commutative pairs, form the 
following three products. A screw-displacement is a rotation 
combined with a translation in the axial direction. A glide- 
reflection is a reflection combined with a translation whose direc­
tion is that of a line lying in the reflecting plane. A rotatory- 
reflection is a rotation combined with the reflection in a plane 
perpendicular to the axis. In the last case, if the rotation is a 
half-turn, the rotatory-reflection is an inversion (or “reflection 
in a point ”), and the direction of the axis is indeterminate. In 
fact, an inversion is the product of reflections in any three per­
pendicular planes through its centre ; e.g., reflections in the axial 
planes of a Cartesian frame reverse the signs of x, y, z, respectively, 
and their product transforms (x, y, z) into {—x, —y, —z).

We proceed to prove that every congruent transformation is 
of one of the above kinds.

An opposite transformation, being the product of (at most) 
three reflections, leaves invariant either a point or two parallel 
planes (and all planes parallel to them). The latter possibility 
is the limiting case of the former when the invariant point recedes 
to infinity; it arises when the three reflecting planes are all 
perpendicular to one plane, instead of forming a trihedron.

If there is an invariant point 0, consider the product of the 
given (opposite) transformation with the inversion in 0. This 
direct transformation, leaving 0 invariant, must be a rotation. 
Hence the given transformation is a “rotatory-inversion”, the 
product of a rotation with the inversion in a point on its axis. 
By regarding the inversion as a special rotatory-reflection,f we 
see that a rotatory-inversion involving rotation through angle 6 
is the same as a rotatory-reflection involving rotation through 
d—n. Hence every opposite transformation leaving one point 
invariant is a rotatory-reflection.

♦ Kelvin and Tait 1, p. 69.
■f Cryatallographers prefer to take translation, rotation, and inversion as 

“ primitive ” transformations, and to regard a reflection as a special rotatory- 
inversion. See Hilton 1, Donnay 1.
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If, on the other hand, it is two parallel planes that are invariant, 
the transformation is essentially two-dimensional: what happens 
in one of the two planes happens also in the other and in all 
parallel planes. By the two-dimensional theory, we then have a 
glide-reflection. Hence

3-13. Every opposite congruent transformation is either a 
rotatory-reflection or a glide-reflection (including a pure reflection 
as a special case).

In order to analyse the general displacement or direct trans­
formation, we first regard the transformation as operating on 
bundles of parallel rays, represented by single rays through a 
fixed point 0. The induced transformation, leaving 0 invariant, 
is stiU direct, and so can only be a rotation. The direction of the 
axis, OQ, of this rotation, must be invariant for the original dis­
placement as well. Let tu be any plane perpendicular to OQ. 
The product of the displacement with the reflection in £3 is an 
opposite transformation which reverses the direction OQ, i.e., a 
rotatory-reflection or glide-reflection whose reflecting plane is 
parallel to cD. Reflecting in ta again, and remembering that the 
product of reflections in two parallel planes is a translation, we 
express the displacement as the product of a rotation or transla­
tion with a translation, i.e., as either a “ rotatory-translation ” 
or a pure translation. The latter alternative can be disregarded, 
as being merely a special case of the former. This “rotatory- 
translation ” is the product of a rotation about a line parallel to 
OQ with a translation in the direction OQ (or QO), i.e., a screw- 
displacement. Hence

3-14. Every displacement is a screw-displacement (including, 
in particular, a rotation or a translation).*

3-2. Transformations in general. The concept of a congruent 
transformation, applied to figures in space, can be general­
ized to that of a one-to-one transformation applied to any set of 
elements.t When we speak of the resultant of two transforma­
tions as their “ product ”, we are making use of the analogy that 
exists between transformations and numbers. We shall often 
use letters R, S, . . . to denote transformations, and write RS

* Kelvin and Tait 1, pp. 78-79. 
t See Birkhoff and MacLane 1, pp. 124-127.

[§ 3-1
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for the resultant of R and S (in that order). This notation is 
justified by the validity of the associative law
3-21 (RS)T = R(ST).

Since a number is unchanged when multiplied by 1, it is natural 
to use the same symbol 1 for the “ identical transformation ” or 
identity (which enters our discussion as the translation through 
no distance, and again as the rotation through angle 0 or through 
a complete turn). Pushing the analogy farther, we let R*” denote 
the p-fold application of R ; e.g., if R is a rotation through 6, 
R^ is the rotation through p9 about the same axis. A transforma­
tion R is said to be periodic if there is a positive integer p such 
that R*’=l ; then its period is the smallest p for which this 
happens. We also let R-^ denote the inverse of R, which neutral­
izes the effect of R, so that RR-i= l=R-iR. If R is of period p, 
we have R~i=R*’“i. In particular, a transformation of period 2 
(such as a reflection, half-turn, or inversion) is its own inverse.

The general formula for the inverse of a product is easily seen
(RS . . . T)-i = T-i . . . S-i R-b

If R, etc. are of period 2, this is the same as T ... SR ; e.g., if 
R and S are reflections in parallel planes, the products RS and 
SR are two inverse translations, proceeding in opposite directions. 
The analogy with numbers might be regarded as breaking down 
in the general failure of the commutative law SR=RS ; but 
there are generalized numbers, such as quaternions, which like­
wise need not commute.

Let X denote any figure to which a transformation is applied. 
If T transforms x into x' (so that T-^ transforms x' into x), we

This notation is justified by the fact that (x’’)®=x™. If S trans­
forms the pair of figures (x, x'^) into (x^, x/‘), we say that S 
transforms T into T^, and write

Ti = TS.
(We may speak of this as “ T transformed by S ” ; e.g., if T is a 
rotation about an axis 1, then T® is the rotation through the same 
angle about the transformed axis 1®.) Since x^^x® and Xj^*=(x''’)®, 
we have x®'r>=x'^® for every x. Hence STi=TS, and

T® = S-iTS.
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Transforming a product, we find that
(TU)® = S-iTUS = S-iTSS-iUS = T^U®.

Hence, for any integer p, (T^)® = (T®)p.
If S and T commute, so that TS=ST and T®=T, we say that 

T is invariant under transformation by S.
The “ figure ” x need not be geometrical; eg., it could be a 

number or variable, in which case is a function of this variable, 
and a more customary notation is T(x). (The particular trans­
formations x'= x*
where t takes various numerical values, are seen to combine among 
themselves just like the numbers t.) Again, x could be a discrete 
set of objects in assigned positions, and x’’^ the same set rearranged; 
then T is a permutation.

The two alternative notations currently used for permutations 
are illustrated by the symbols

c g: a: f s
for the permutation of seven letters that replaces a, b, c, e, g, by 
c, g, e, a, b, while leaving d and f unchanged. In the latter 
notation, which we shall use exclusively, the two parts (ace) 
and (b g) are called cycles. Clearly, every permutation is a 
product of cycles involving distinct sets of objects. It is some­
times desirable to include all the objects, e.g., to write

(a c e) (b g) (d) (f),
calling (d) and (f) “ cycles of period 1 ”. A transposition is a 
single cycle of period 2, such as (b g), which merely interchanges 
two of the objects.

A permutation is said to be even or odd according to the parity 
of the number of cycles of even period; e.g., (a c e) (b g) is an 
odd permutation. When a permutation is multiplied by a trans­
position, its parity is reversed. For, if (a^ b^) is the transposition, 
a^ and b^ must either occur in the same cycle of the given per­
mutation or in two different cycles. Since

(a^... a, bj... b,) (aj^ b^) = (aj^... a,.) (b^... b,) 
and (ai. . . a,) (b^. . . b.) (a^ b^) = (a^... a, bj... b,),
it merely remains to observe that one or all of the three periods
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r, a, r+s must be even.* It follows (by induction) that every 
product of an even [odd] number of transpositions is an even [odd} 
permutation.

3-3. Groups. The subject of group-theory has been ade­
quately expounded many times, sO we shall be content to recall 
just the most relevant of its topics, in an attempt to make this 
book reasonably self-contained.

A set of elements or “ operations ” is said to form an abstract 
group if it is closed with respect to some kind of associative 
‘‘ multiplication ”, if it contains an “ identity ”, and if each opera­
tion has an “inverse”. More precisely, a group contains, for 
every two of its operations R and S, their product RS ; 3-21 
holds for all R, S, T ; there is an identity, 1, such that

1R = R
for all R ; and each R has an inverse, R~^, such that

R-iR=l.
It is then easily deduced that R1 = R and RR“^ = 1.

The number of distinct operations (including the identity) is 
called the order of the group. This is not necessarily finite.

A subset whose products (with repetitions) comprise the whole 
group is called a set of generators (as these operations “ generate ” 
the group). In particular, a single operation R generates a group 
which consists of all the powers of R, including R®=1. This is 
called a cyclic group ; it is finite if R is periodic, and then its 
order is equal to the period of R. We may say that the cyclic 
group of order p is defined by the relation

RJ’= 1,
with the tacit understanding that for 0<n<p. More
generally, any group is defined by a suitable set of generating 
relations ; e.g., the relations
3-31 Ri2 = R22=(RjR2)3= 1
define a group of order 6 whose operations are 1, R^, R2, Ri R2> 
Rg Ri, and R^ R2 Ri=R2 Ri Rg-

* This proof is taken from Levi 1, p. 7. Note that Levi multiplies from right 
to left.
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A subset which itself forms a group is called a subgroup. (For 
the sake of completeness it is customary to include among the 
subgroups the whole group itself and the group of order one 
consisting of 1 alone.) In particular, each operation of any group 
generates a cyclic subgroup.

If a given subgroup consists of T^, Tg, . . ., while S is any 
operation in the group, the set of operations ST^ is called a left 
coset of the subgroup, and the set T^S is called a right coset.* It 
can be proved that any two left (or right) cosets have either 
the same members or entirely different members. Hence the 
subgroup effects a distribution of all the operations in the group 
into a certain number of entirely distinct left (or right) cosets. 
This number is called the index of the subgroup. When the group 
is finite, the index is the quotient of the orders of the group and 
subgroup.

Two operations T and T' are said to be conjugate if one can be 
transformed into the other, i.e., if the group contains an operation 
S such that T'=T®, or ST'=TS. The relation of conjugacy is 
easily seen to be refiexive, symmetric, and transitive. A sub­
group Ti, Tg, . . . is said to be self-conjugate if, for every S in the 
group, the operations T^ are a permutation of their transforms 
T/, i.e., if the left and right cosets ST^ and T^S are identical 
(apart from order of arrangement of members). In particular, 
any subgroup of index 2 is self-conjugate.

If two groups, Gi and Gg, have no common operations except 
the identity, and if each operation of Gi commutes with each 
operation of Gg, then the group generated by Gi and Gg is called 
their direct product, GixGg. (This clearly contains Gi and Gg 
as self-conjugate subgroups.) For instance, the cyclic group of 
order pq, where p and q are co-prime, is the direct product of 
cyclic groups of orders p and q (generated by R« and RJ", if R 
generates the whole group).

When the operations are interpreted as transformations, we 
have a representation of the abstract group as a transformation 
group. Since transformations automatically satisfy 3-21, we may 
say that a set of transformations forms a group if it contains the 
inverse of each member and the product of each pair. In par­
ticular, a group may consist of certain permutations of n objects ; 
it is then called a permutation group of degree n. A permutation 
group is said to be transitive (on the n objects) if its operations 

♦ Birkhofif and MaoLane 1, p. 146.
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suffice to replace one object by all the others in turn. The three 
most important transitive groups are :

(i) the symmetric group of order n\, which consists of all the 
permutations of the n objects,

(ii) the alternating group of order w!/2, which consists of the 
even permutations,

(iii) the cyclic group of order n, which consists of the cyclic 
permutations, viz., the powers of the cycle (a^ . . . a„).

We easily verify that the alternating group is a subgroup of 
index 2 in the symmetric group (of the same degree). When 
w=2, (i) and (iii) are the same. When n=3, (ii) and (iii) are 
the same.

The six operations of the symmetric group on a, b, c are
3-32 1, (ah), (ac), (be), (a be), (aeb).
In terms of the two generators Ri=(a b) and R2=(a e), these are

1, Rj, R2, Rj^ R2 Rj, Rj R2, R2 Ri-

It is instructive to compare this with the group consisting of the 
following six transformations of a variable x :

X —X, 1—a:. X i= .
a;—1

a;—1 1-a:
Two such groups are said to be isomorphic, because they have the 
same “ multiplication table ” and consequently both represent 
the same abstract group.* In the present instance the abstract 
group is defined by 3-31.

Let a group G contain a self-conjugate subgroup T. Then 
any operation S of G occurs in a definite coset <S> = ST = TS. 
The distinct cosets can be regarded as the operations of another 
group, in which products, identity, and inverse are defined by

<R><S> = <RS>, <1> = T, <S>-i=<S-i>.
This new group is called a factor group of G, or more explicitly 
the quotient group G/T. If it is finite, its order is equal to the 
index of T in G.

It may happen that G contains a subgroup S whose operations
* For an interesting discussion of the identification of isomorphic systems, 

see Levi 1, p. 70.
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Sj- “ represent ” the cosets of T, in the sense that the distinct 
cosets are precisely Then S is isomorphic with G/T. For
instance, if G is the symmetric group 3-31, while T is the cyclic 
subgroup generated by Rg, then S could consist of 1 and R^. 
Again, if G is the continuous group of all displacements, while 
G/T is the same group regarded as “ operating on bundles of 
parallel rays ” (see page 38), then T is the group of all transla­
tions, and S is the group of rotations leaving one point invariant.

It may happen, further, that the subgroup S is self-conjugate, 
like T. Then TjS,=S,Tj, and G=SxT. For instance, if G is 
the cyclic group of order 6 defined by R®= 1, S and T might be 
the cyclic subgroups generated by R® and R®, respectively.

3-4. Symmetry operations. When we say that a figure is 
“ symmetrical ”, we mean that there is a congruent transforma­
tion which leaves it imchanged as a whole, merely permuting its 
component elements. For instance, when we say (as in § 2-8) that 
a zonohedron has central symmetry, we mean that there is an 
inversion which leaves it invariant. Such a congruent transforma­
tion is called a symmetry operation. Clearly, all the symmetry 
operations of a figure together form a group (provided we 
include the identity). This is called the symmetry group of the 
figure.

Conversely, given a group of congruent transformations, we 
can construct a symmetrical figure by taking all the transforms 
of any one point. The group is a subgroup of the symmetry 
group of the figme ; in fact, it is usually the whole symmetry 
group. If the given group is finite, the figme consists of a finite 
number of points which the transformations permute. These 
points have a centroid (or “ centre of gravity ”) which is trans­
formed into itself. Thus

3-41. Every finite group of congruent transformations leaves at 
least one point invariant.*

It follows that the transforms of any point by such a group lie 
on a sphere.

A group of transformations may be discrete without being finite. 
This means that every point has a discrete set of transforms, i.e., 
that any given point has a neighbourhood containing none of its 
transforms (save the given point itself).

• Bravais 1, p. 143 (Thfiordme III).
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In the case of the cyclic group generated by a single congruent 

transformation S, the transforms of a point Ag of general position
are . . . > A_2> A_;^, Aq, Aj^, A2, • • • j
where A„=Ao®". These may be regarded as the vertices of a 
generalized regular polygon (cf. § 1-1).

The various kinds of congruent transformation lead to various 
kinds of polygon. If S is a reflection, half-turn, or inversion, the 
polygon reduces to a digon, {2}. If S is a rotation, the sides are 
equal chords of a circle ; if the angle of rotation is 2nlp, we have 
the ordinary regular polygon, {p}. (The case where p is rational 
but not integral will be developed in § 61.) If S is a translation 
we have the limiting case where p becomes infinite : a sequence 
of equal segments of one Une, the apeirogon, { 00 }. If S is a glide- 
reflection, the “ polygon ” is a plane zigzag. If S is a rotatory- 
reflection, it is a skew zigzag, whose vertices lie alternately on 
two equal circles in parallel planes ; if the angle of the component 
rotation is nip, the sides are the lateral edges of a p-gonal anti­
prism. (Cases where p=2, 3, 5 occurred as Petrie polygons in 
§ 2-6.) Finally, if S is a screw-displacement we have a helical 
polygon, whose sides are equal chords of a helix.

In every case except that of the digon, the cyclic group gener­
ated by S is not the whole symmetry group of the generahzed 
polygon ; e.g., there is a symmetry operation interchanging A„ 
and A_„ for all values of n (simultaneously). In the case of the 
ordinary polygon {p}, the line joining the centre to any vertex, 
or to the mid-point of any side, contains one other vertex or 
mid-side point; thus there are p such lines. The p-gon is sym­
metrical by a half-turn about any of them, besides being sym­
metrical by rotation through any multiple of 2it/p about the 
“ axis ” of the polygon. Thus the complete symmetry group of 
{p} is of order 2p, consisting of p half-turns about concurrent lines 
in the plane of the polygon, and p rotations through various 
angles about one line perpendicular to that plane.

The symmetry operations of a figure are either all direct, or 
half direct and half opposite. For, if an opposite operation occurs, 
its products with all the direct operations are all the opposite 
operations. Thus the rotation group formed by the direct opera­
tions is either the whole symmetry group or a subgroup of index 2. 
In the latter case the opposite operations form the single distinct 
coset of this subgroup.
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The complete symmetry group of {p}, as described above, is the 
rotation group of the dihedron {p, 2} (§ 1-7), and is consequently 
known as the dihedral group of order 2p. On the other hand, the 
complete symmetry group of {p, 2} is of order 4p, as it contains 
also the same rotations multiphed by the reflection that inter­
changes the two faces of the dihedron. As a symmetry operation 
of {p} itself, the reflection in its own plane does not differ from the 
identity. Thus the p half-turns can be replaced by their products 
with this reflection, which are reflections in p coaxial planes.

The situation becomes clearer when we take a purely two- 
dimensional standpoint, considering rotations about points and 
reflections in lines. Then the symmetry group of [p] consists of 
p reflections (in lines joining the centre to the vertices and mid­
side points) and p rotations (about the centre); but the rotation 
group of {p} is cyclic.

It is interesting to observe that the dihedral group of order 6 
(or “ trigonal dihedral group ”) is isomorphic with the symmetric

a b c a c b

Pig. 3-4a

group of degree 3. In fact, the six symmetry operations of the 
equilateral triangle {3} permute the vertices a, b, c in accordance 
with 3-32 (see Fig. 3-4a). The transpositions appear as reflections, 
and the cyclic permutations as rotations.

3-5. The polyhedral groups. The most interesting finite groups 
of rotations are the rotation groups of the regular polyhedra, 
which we proceed to investigate.

Every rotation that occurs in a finite group is of finite period ; 
so its angle must be commensurable with n. In fact, the smallest 
angle of rotation about a given axis is a submultiple of 27r, and 
all other angles of rotation about the same axis are multiples of 
this smallest one. For,* if j and p are co-prime, we can find a 
multiple oi Up which differs from 1/p by an integer ; so if 2-77]fp 
is the smallest angle of rotation that occurs, we must have j=l. 
The rotations about this axis then form a cyclic group of order

* Bravais 1, p. 142.
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p, so we speak of an axis of p-fold rotation. When p=2, 3, 4, or 5, 
the axis is said to be digonal, trigonal, tetragonal, or pentagonal.

Two reciprocal polyhedra obviously have the same symmetry 
group, and likewise the same rotation group. The centre of 
{p, q] is joined to the vertices, mid-edge points, and centres of 
faces, by axes of g-fold, 2-fold, and p-fold rotation. Clearly, no 
further axes of rotation can occur. In other words, the direct 
symmetry operations of the polyhedron consist of rotations 
through angles 2k-iTlq, tt, and ^j-njp, about these respective lines. 
If we exclude the identity, these rotations involve q—\ values 
for k, and p—\ for j. But the vertices, mid-edge points, and 
face-centres occur in antipodal pairs. (In the case of the tetra­
hedron, each vertex is opposite to a face.) Hence the total 
number of rotations, excluding the identity, is

- 1) + + N^{p - 1)] = \{N,q - 2 -t- - 1
(by 1-61 and 1-71), and the order of the rotation group is 2Ni.

The same result may also be seen as follows. Let a sense of 
direction be assigned to a particular edge. Then a rotational sym­
metry operation is determined by its effect on this directed edge. 
Thus there is one such rotation for each edge, directed in either 
sense : 2Nj^ rotations altogether. Still more simply, the order
of the rotation group is equal to the number of edges of |^| ;
for the group is transitive on those edges, and the subgroup 
leaving one of them invariant is of order 1.

In particular, we have the tetrahedral group of order 12, the 
octahedral group of order 24 (which is also the rotation group of 
the cube) and the icosahedral group of order 60 (which is also the 
rotation group of the dodecahedron). In § 3-6 we shall identify 
these with permutation groups of degree 4 or 5.

3-6. The five regular compounds. We define a compound 
polyhedron (or, briefly, a compound) as a set of equal regular 
polyhedra with a common centre. The compound is said to be 
vertex-regular if the vertices of its components are together the 
vertices of a single regular polyhedron, and face-regular if the 
face-planes of its components are the face-planes of a single 
regular polyhedron. For instance, the diagonals of the faces of 
a cube are the edges of two reciprocal tetrahedra. (See Plate I, 
Fig. 6, or Plate III, Fig. 5.) These form a compound, Kepler’s
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Stella octangula, which is both vertex-regular and face-regular : its 
vertices belong to a cube, and its face-planes to an octahedron.

We shall find it convenient to have a definite notation for 
compounds.* If d distinct {jp, gj’s together have the vertices of 
{m, n), each counted c times, or the faces of {s, <}, each counted 
e times, or both, we denote the compound by

c{m, n}[d{p, q}] or [d{p, g'}]e{s, t} or c{m, n}[d{p, g}]e{s, t}.
The reciprocal compound is clearly

[d{q, p]\c{n, m} or e{t, s}{d{q, p}] or e{t, 8}\d{q, p)\c{n, m}.

The numbers of vertices of {m, n] and {p, q] are in the ratio 
d : c, and the numbers of faces of {s, <} and [p, q] are in the ratio 
d : e. For instance, the stdla octangula is

{4, 3}[2{3, 3}] {3, 4}
(with c=e=l). Other examples will be obtained in the coimse of 
the following investigation of the polyhedral groups.

In order to identify the tetrahedral group with the alternating 
group of degree 4, we observe that the vertices of a regular tetra­
hedron are four points whose six mutual distances are aU equal.

Fio. 3'6bFig. 3-6a

This statement involves the four points symmetrically, so we 
should expect all the 24 permutations in the symmetric group to 
be represented by symmetry operations of the tetrahedron. In 
fact, the transposition (1 2) is represented by the reflection in the 
plane 034, where 0 is the mid-point of the edge 12 (Fig. 3-6a).

* This symbolism is admittedly clumsy, but the obvious alternatives would 
be more difficult to print. Note the different roles of the numbers c (or e) and d : 
we have d distinct {p, g}’s, but c coincident {m, n}’s.



PLATE III
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But any even permutation, being the product of two transpositions, 
is represented by a rotation. Thus the “ tetrahedral group ” 
(which we have defined as consisting of rotations alone) is the 
alternating group of degree 4.

In the Stella octangula, every symmetry operation of either 
tetrahedron is also a symmetry operation of the cube ; but the 
cube has additional operations which interchange the two tetra- 
hedra. The rotation group of the tetrahedron 1234 evenly per­
mutes the four diameters 11', 22', 33', 44' of the cube (Fig. 3'6b). 
But the odd permutations of these diameters likewise occur as 
rotations ; e.g., 11' and 22' are transposed by a half-turn about 
the join of the mid-points of the two edges 12' and 21'. Hence 
the octahedral group (which is the rotation group of the cube) 
is the symmetric group of degree 4.

If ABODE and AEFGH are two adjacent faces of a regular 
dodecahedron, the vertices BDFH clearly form a square, whose 
sides join alternate vertices of pentagons. Moreover, these four 
vertices, with their antipodes, form a cube ; and alternate 
vertices of this cube form a tetrahedron (such as 1111 in Fig. 
3-6c or d). It is easily seen that the rotations of this tetrahedron 
into itself are symmetry operations of the whole dodecahedron, 
i.e., that the tetrahedral group occurs as a subgroup in the 
icosahedral group (as well as in the octahedral group). The 
remaining operations of the icosahedral group transform this 
tetrahedron into others of the same sort, making altogether a 
compound of five tetrahedra inscribed in the dodecahedron. 
(Plate III, Fig. 6.) In other words, the twenty vertices of the 
dodecahedron are distributed in sets of four among five tetrahedra. 
The central inversion transforms this into a second compound of 
five tetrahedra, enantiomorphous (and reciprocal) to the first. 
The two together form a compound of ten tetrahedra (Fig. 7), 
reciprocal pairs of which can be replaced by five cubes (Fig. 8). 
Here each vertex of the dodecahedron belongs to two of the tetra­
hedra, and to two of the cubes.

We have thus obtained three vertex-regular compounds whose 
vertices belong to a dodecahedron. By reciprocation, we find that 
the compounds of tetrahedra are also face-regular, their face- 
planes belonging to an icosahedron. But the face-planes of the 
five cubes belong to a triacontahedron, so the reciprocal is a face- 
regular compound of five octahedra whose vertices belong to an
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icosidodecahedron. (Plate III, Fig. 9.) The appropriate symbols
{5, 3} [5{3, 3}] {3, 5},

2{5, 3}[i(?{3, 3}]2{3, 5},
2{5, 3}[5{4, 3}] and [5{3, 4}]2{3, 5}.

A very pretty effect is obtained by making models of these 
compounds, with a different colour for each component. The 
colom-ing of the five cubes determines a colouring of the triaconta- 
hedron in five colours, so that each face and its four neighbours 
have different colours. This scheme is used by Kowalewski as 
an aid to his Bauspiel (see § 2-7).

The two enantiomorphous compounds of five tetrahedra may 
be distinguished as laevo and dextro. They provide a convenient 
symbolism for the twenty vertices of the dodecahedron (or for 
the twenty faces of the icosahedron) as follows. We number the 
five tetrahedra of the laevo compound as in Fig. 3-6c ; those of 
the dextro compound (Fig. 3-6d) acquire the same numbers by 
means of the central inversion. Then the vertices of the dodeca­
hedron are denoted by the twenty ordered pairs 12, 21, 13, 31,
. . . , 45, 54, in such a way that ij is a vertex of the ith laevo 
tetrahedron and of the jth dextro tetrahedron. (For simplicity, 
the dodecahedron in Fig. 3-6b has been drawn as an opaque solid. 
The symbols for the hidden vertices are easily supplied, as ji 
is antipodal to ij.)

Each direct symmetry operation of the dodecahedron is repre­
sentable as a permutation of the five digits ; e.g., the permutation 
(1 2 3) is a trigonal rotation about the diameter joining the 
opposite vertices 45 and 54, (1 4)(3 5) is a digonal rotation about 
the join of the mid-points of edges 13 45 and 31 54, and (1 2 3 4 5) 
is a pentagonal rotation about the join of centres of two opposite 
faces. Since all these are even permutations, we have proved that 
the icosahedral group is the alternating group of degree 5.

To sum up, the symmetric groups of degrees 3 and 4 are the 
rotation groups of {3, 2} and {3, 4}, and the alternating groups of 
degrees 4 and 5 are the rotation groups of (3, 3} and {3, 6}.

3'7. Coordinates for the vertices of the regular and quasi­
regular solids. The only regular polyhedron whose faces can be 
coloured alternately white and black, like a chess board, is the 
octahedron {3, 4}. For, this is the only polyhedron {p, g} with 
q even. In Fig. 3-6b we denoted the vertices of the cube by
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1, 2, 3, 4, 1', 2', 3', 4'. By reciprocation, the same symbols can 
be used for the faces of the octahedron, and we may distinguish 
the two sets of four faces as white and black. (In other words, 
we colour the faces of the octahedron like those of a Stella octangula 
whose two tetrahedra are white and black, respectively.) By 
assigning a clockwise sense of rotation to each white face, and a 
counterclockwise sense to each black face, we obtain a coherent

indexing of the edges, such as can be indicated by marking an 
arrow along each edge. Then, if we proceed along an edge in 
the indicated direction, there will be a white face on our right 
side and a black face on our left.

This enables us to define, for any given ratio a : b, twelve points 
dividing the respective edges in this ratio, so that the three points 
in each face form an equilateral triangle. In general, these 
twelve points will be the vertices of an irregular icosahedron, 
whose faces consist of eight such equilateral triangles and twelve
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isosceles triangles. Without loss of generality, we may suppose 
that a >6. When a/6 is large, the isosceles triangles have short 
bases ; in the limit they disappear, as their equal sides coincide 
and lie along the twelve edges of the octahedron. But when a 
approaches equality with 6, the isosceles triangles tend to become 
right-angled ; in the limit, pairs of them form halves of the six 
square faces of a cuboctahedron, as in Fig. 84a on page 152.* 
By considerations of continuity, we see that at some intermediate 
stage the isosceles triangles must become equilateral, and the 
icosahedron regular. In fact, the squares of the respective sides 
are a^—ab-\-b^ and 26^, which are equal if

a* — a6 — 6* = 0,
so that alb=r. (See 2 47.) Thus the twelve vertices of the icosa­
hedron can be obtained by dividing the twelve edges of an octahedron 
according to the golden section.'\ For a given icosahedron, the octa­
hedron may be any one of the [5{3, 4}]2{3, 5}.

In terms of rectangular Cartesian coordinates, the vertices of a 
cube (ofndge 2) are
3-71 (±1) ±1) ±1))
those of a tetrahedron (of edge 2v'2) are
3-72 (1,1,1), (1,-1,-1), (-1,1,-!), (-1,-1, 1),
and those of an octahedron (of edge \/2) are
3-73 (±1, 0, 0), (0, ±1, 0), (0, 0, ±1).

If a-f6=l, the segment joining (0, 0, 1) and (0, 1, 0) is divided 
in the ratio a : 6 by the point (0, a, b). Such points on all the 
edges of the octahedron 3-73 are

(0, ±a, ±6), (±6, 0, ±a), (±a, ±6, 0).
Hence the vertices of a cuboctahedron (of edge 'v/2) are 
3-74 (0, ±1, ±1), (±1, 0, ±1), (±1, ±1, 0),
and the vertices of an icosahedron (of edge 2) are 
3’75 (0, ±T, ±1), (±1, 0, ±t), (±t, ±1, 0).

[§ 3-7

• See also Coxeter 13, p. 396. t Cf. Schonemann 1.
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The planes of the faces
(0, T, 1) (±1, 0, t) and (0, t, 1) (1, 0, t) (t, 1, 0)

are respectively
T~^y + tz = T® and a: + y + z = t®.

(Remember that t*=t+1.) Hence the vertices of the reciprocal 
dodecahedron (of edge 2t~^) are

3-76 (0, ±T-i, ±t), (±t, 0, (±t-i, ±t, 0), (±1, ±1, ±1).

One of the five inscribed cubes is thus made very evident.

The mid-point of the edge (t, ±1, 0) of the icosahedron 3-75 is 
(t, 0, 0), while that of the edge (1, 0, t) (t, 1, 0) is (Jr^ ^). 
Hence (after multiplication by 2t“^) the vertices of an icosidodeca- 
hedron (of edge 2t“^) are

0.77 I (±2, 0, 0), (0, ±2, 0), (0, 0, ±2),
1 (±T, ±T-1, ±1), (±1, ±T, ±T-^), (±T-1, ±1, ±t).

The vertices in the upper row belong to one of the octahedra of 
[5{3, 4}]2{3, 5}.

3-8. The complete enumeration of finite rotation groups. In 
§§ 3-4 and 3-5 we considered various groups of rotations : cyclic, 
dihedral, tetrahedral, octahedral, icosahedral. The question now 
arises. Are these the ordy finite groups of rotations ? If so, they 
are also the only finite groups of displacements (by 3-41 and 3-12). 
We shall find that the answer is Yes.

Consider the general finite group of rotations. Since there is 
an invariant point 0 (lying on the axes of all the rotations), it 
is convenient to regard the group as operating on a sphere with 
centre 0, instead of the whole space. Each rotation, having for 
axis a diameter of the sphere, is then regarded as a rotation 
about a point on the sphere. (We must remember, however, that 
the rotation through angle 6 about any point is the same as the 
rotation through —6 about the antipodal point.) We saw (as a 
consequence of 3-12) that the product of two such rotations is 
another. To determine the product of two given rotations, we 
make use of the following theorem :

If the vertices of a spherical triangle PQR (like the triangle
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PQ^R in Fig. 3-8a) are named in the negative (or clockwise) sense, 
the product of rotations through angles 2P, 2Q, 2R about P, Q, B is 
the identity.

To prove this, we merely have to express the given product of 
rotations as the product of reflections in the great circles RP, PQ ;
PQ, QR ; QR, RP.

It follows that the product of rotations through 2P and 2Q 
about P and Q is the rotation through — 2J2 about R. In par­

ticular, the product of half-turns about any 
two points P and Q is the rotation through 
—2ZP0Q about one of the poles of the great 
circle PQ (or through +2Z.P0Q about the 
other pole). This product of half-turns can­
not itself be a half-turn Tinless the axes OP 
and OQ are perpendicular. Hence, if a rota­
tion group has no operation of period greater 
than 2, it must be either the group of order 
2 generated by a single half-turn, or the 

“ four-group ” generated by two half-turns about perpendicular 
axes ; i.e., it must either be the cyclic group of order 2 or the 
dihedral group of order 4.

Secondly, if there is just one axis of p-fold rotation where p>2, 
this must be perpendicular to any digonal axes that may occur. 
Hence the group is either cyclic of order p or dihedral of order 2p.

Finally, if there are several axes of more than 2-fold rotation, 
let one of them be OP, so that there is a rotation through 2ttIp 
about P. The group being flnite, there is a least distance from P 
(on the sphere) at which we can And a point lying on another 
axis of more than 2-fold rotation, say g-fold rotation. Successive 
rotations through 2ttIp about P transform into other centres 
of g'-fold rotation, say Qj, . . . , Qp, lying on a small circle within 
which P is the only centre of more than 2-fold rotation. (See 
Fig. 3-8a.) The product of rotations through 2ttIp and 277/^ 
about P and is the rotation through —2-iTlr about a point R 
such that the spherical triangle PQ^R has angles nip, nlq, nlr.

We proceed to determine the position of R and the value of r. 
(We cannot yet say whether r is an integer.) Since the angle-sum 
of any spherical triangle is greater than n, we have

0,

111.,- -t- - -t- - 1.
pgr

3-81
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But ^)>3 and ^>3. Hence r<3, and consequently q>r. Thus 
the triangle PQjR has a smaller angle at than at R, and the 
same inequality must hold for the respectively opposite sides. 
Hence R lies inside the small circle around P, and OR must be a 
digonal axis ; so the rotation through — 277/r about R, which 
transforms Q^, into Q^, can only be a half-turn. Hence r=2, and 
OR bisects the angle QpOQj, i.e., R is the mid-point of the side 
Qp Qi of the spherical p-gon Qi Q2 • • • Qj,. Successive rotations 
through 27r/g' about transform this p-gon (of angle 27T/q) into 
a set of q p-gons completely surroimding their common vertex Qj. 
Further rotations of the same kind lead to a number of p-gons 
fitting together to cover the whole sphere.

Thus the transforms of are the vertices of the regular poly­
hedron {p, q}, the transforms of P are the vertices of the reciprocal 
polyhedron {q, p}, and the transforms of R are the vertices of the
“ semi-reciprocal ” polyhedron . The inequality 3-81 (or
2-32) reduces to 1-73, and we have the three polyhedral groups of 
§3-5. (The triangle PQjR was called Pg Pp P^ in § 2-5.)

From our construction we can be sure that the p-gonal and 
g-gonal axes through the vertices of {q, p} and (p, q} are the only 
axes of more than 2-fold rotation. But can we be sure that the
axes through the vertices of |^| are the only digonal axes ?
Might not a further digonal axis occur midway between P and Q^, 
if p=g' ? No: that half-turn would combine with the rotation 
through 27r/p about P to give a rotation of period 4 about R, 
which is absurd.

3-9. Historical remarks. The kinematics of a rigid body 
(§3-1) was founded by Euler (1707-1783) and developed by 
Chasles, Rodrigues, Hamilton, and Donkin. In particular, 312 
is commonly called “ Euler’s Theorem ”.

The theory of permutation groups (or “ substitution groups ”) 
was developed by Lagrange (1736-1813), Rufifini, Abel (1802-1829), 
Galois (1811-1832), Cauchy (1789-1857), and Jordan (whose 
famous TraiU des Substitutions appeared in 1870). Lagrange 
proved that the order of a group is divisible by the order of any 
subgroup. Galois made such important contributions to the sub­
ject that he eventually became recognized as the real founder of 
group-theory ; yet his contemporaries scorned him, and he was
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murdered* at the age of twenty. The notion of a self-conjugate 
subgroup is due to him, and it was he who first distributed the 
operations of a group into cosets (though the actual word “ co-set ” 
was coined in 1910 by G. A. Miller). The first precise definition of 
an abstract group was given in 1854 by Cayley (1).

In § 3-4 we considered the set of transforms of a single point 
by a group of congruent transformations. This idea occurs in a 
posthumous paper of MObius (2). The rotation group of the 
regular polyhedron {p, q) was investigated in 1856 by Hamilton 
(1), who gave an abstract definition equivalent to

RP = S«=(RS)2=1.
The polyhedral groups also arose in the work of Schwarz and 
Klein, as groups of transformations of a complex variable. The 
first chapter of the latter’s Lectures on the Icosahedron (Klein 2) 
may well be read concurrently with §§ 3-5 and 3-6.

The compound polyhedra were thoroughly investigated by Hess 
in 1876.t But the stdla octangula {4, 3}[2{3, 3}] {3, 4} had already 
been discovered by Kepler (1, p. 271) and may almost be said to 
have been anticipated in Euclid XV, 1 and 2. It occurs in nature 
as a crystal-twin of tetrahedrite; The existence of the remaining 
compounds is a simple consequence of Kepler’s observation that 
a cube can be inscribed in a dodecahedron. It was Hess who 
first gave Cartesian coordinates for the vertices of aU the regular 
and quasi-regular polyhedra,} as in § 3-7.

We proved in § 3-8 that the only finite groups of rotations are 
the cychc, dihedral, and polyhedral groups. Our proof is essenti­
ally that of Bravais, amplified by justifying his assumption || 
“ Le point A viendra en C.” Bravais’s proof occurs as part of 
the more comphcated problem of enumerating the finite groups 
of congruent transformations, which includes the enumeration 
of the 32 geometrical crystal classes.** This enumeration was

* See Infeld 1.
t Hess 1, pp. 39 (five octahedra), 45 (five or ten tetrahedra), 52 and 68 (five 

cubes). Klein (1, p. 19) remarks in a footnote that “ one sees occasionally (in 
old collections) models of 5 cubes which intersect one another in such a way. . . .”

t Hess 3, pp. 295, 340-343. For the regular polyhedra, see also Schoute 6, 
pp. 165-159.

II Bravais 1, p. 166. For this amplification I am indebted to Patrick Du Val. 
For a quite different approach, see Ford 1, p. 133 or Zassenhaus, 1, pp. 15-18. 
It is interesting to recall that Bravais (at the age of 18) won the prize in the 
General Competition, on the occasion when Galois was ranked fifth !

** Swartz 1, pp. 386-394; Burekhardt 2, p. 71.

[§ 3-9
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first achieved in 1830, by Hessel (1), whose book remained 
unnoticed till 1891. The next step in the same direction was 
Sohncke’s enumeration of 65 infinite discrete groups of displace­
ments. Finally, after Pierre Curie had drawn attention to the 
importance of the rotatory-refiection, the famous enumeration 
of 230 infinite discrete groups of congruent transformations was 
made independently by Fedorov in Russia (1885), Schoenfiies 
in Germany (1891), and Barlow in England (1894).


