
Chapter 2

Singular Value Decomposition (SVD)
and Polar Form

2.1 Polar Form

In this chapter, we assume that we are dealing with a real
Euclidean space E. Let f : E → E be any linear map.

In general, it may not be possible to diagonalize f . How-
ever, note that f ∗ ◦ f is self-adjoint, since

〈(f ∗ ◦ f )(u), v〉 = 〈f (u), f(v)〉 = 〈u, (f ∗ ◦ f )(v)〉.

Similarly, f ◦ f ∗ is self-adjoint.
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The fact that f ∗ ◦ f and f ◦ f ∗ are self-adjoint is very
important, because it implies that f ∗ ◦ f and f ◦ f ∗ can
be diagonalized and that they have real eigenvalues.

In fact, these eigenvalues are all ≥ 0.

Thus, the eigenvalues of f ∗ ◦ f are of the form µ2
1, . . . , µ

2
r

or 0, where µi > 0, and similarly for f ◦ f ∗.

The situation is even better, since we will show shortly
that f ∗ ◦ f and f ◦ f ∗ have the same eigenvalues.
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Remark : If f : E → F and g: F → E are linear maps,
then g ◦f and f ◦g always have the same non-zero eigen-
values! Furthermore, if E = F , then 0 is an eigenvalue
for f ◦ g iff it is an eigenvalue for g ◦ f .

The square roots µi > 0 of the positive eigenvalues of
f ∗ ◦ f (and f ◦ f ∗) are called the singular values of f .

A self-adjoint linear map f : E → E whose eigenvalues
are all ≥ 0 is called positive semi-definite, for short,
positive, and if f is also invertible, positive definite . In
the latter case, every eigenvalue is strictly positive.

We just showed that f ∗ ◦ f and f ◦ f ∗ are positive self-
adjoint linear maps.

The wonderful thing about the singular value decomposi-
tion is that there exist two orthonormal bases (u1, . . . , un)
and (v1, . . . , vn) such that with respect to these bases, f
is a diagonal matrix consisting of the singular values of
f , or 0.
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Given two Euclidean spaces E and F , where the inner
product on E is denoted as 〈−,−〉1 and the inner product
on F is denoted as 〈−,−〉2, given any linear map
f : E → F , there is a unique linear map f ∗: F → E such
that

〈f (u), v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F .

The linear map f ∗ is also called the adjoint of f .

This more general situation will be encountered when we
deal with the singular value decomposition of rectangular
matrices.
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Recall that if f : E → F is a linear map, the image Im f
of f is the subspace f (E) of F , and the rank of f is the
dimension dim(Im f ) of its image.

Also recall that

dim (Ker f ) + dim (Im f ) = dim (E),

and that for every subspace W of E

dim (W ) + dim (W⊥) = dim (E).

Lemma 2.1.1 Given any two Euclidean spaces E and
F , where E has dimension n and F has dimension m,
for any linear map f : E → F , we have

Ker f = Ker (f ∗ ◦ f ),

Ker f ∗ = Ker (f ◦ f ∗),

Ker f = (Im f ∗)⊥,

Ker f ∗ = (Im f )⊥,

dim(Im f ) = dim(Im f ∗),

dim(Ker f ) = dim(Ker f ∗),

and f , f ∗, f ∗ ◦ f , and f ◦ f ∗, have the same rank.
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The next Lemma shows a very useful property of positive
self-adjoint linear maps.

Lemma 2.1.2 Given a Euclidean space E of dimen-
sion n, for any positive self-adjoint linear map
f : E → E, there is a unique positive self-adjoint linear
map h: E → E such that f = h2 = h ◦ h. Further-
more, Ker f = Ker h, and if µ1, . . . , µp are the distinct
eigenvalues of h and Ei is the eigenspace associated
with µi, then µ2

1, . . . , µ
2
p are the distinct eigenvalues of

f , and Ei is the the eigenspace associated with µ2
i ,

To prove Lemma 2.1.2, we use the following facts:
If g is self-adjoint, positive, then

(1) Ker g = Ker g2;

(2) If µ1, . . . , µp are the distinct nonzero eigenvalues of g,
then µ2

1, . . . , µ
2
p are the distinct nonzero eigenvalues

of g2 (= f );

(3) Ker (g − µiid) = Ker (g2 − µ2
i id).

By the way, one easily checks that g2 = g ◦ g is positive
and self-adjoint.
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In (3), if (g2 − µ2
i id)(u) = 0 with u 6= 0, then

(g + µiid) ◦ (g − µiid)(u) = 0.

But, (g + µiid) must be invertible since, otherwise,
−µi < 0 would be an eigenvalue of g, which is absurd.
Therefore, (g − µiid)(u) = 0.

Actually, it is possible to prove that if f is self-adjoint,
positive, then for every n ≥ 2, there is a unique self-
adjoint, positive, g, so that

f = gn.

There are now two ways to proceed. We can prove directly
the singular value decomposition, as Strang does [?, ?],
or prove the so-called polar decomposition theorem.

The proofs are roughly of the same difficulty. We choose
the second approach since it is less common in textbook
presentations, and since it also yields a little more, namely
uniqueness when f is invertible.
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It is somewhat disconcerting that the next two theorems
are only given as an exercise in Bourbaki [?] (Algèbre,
Chapter 9, problem 14, page 127). Yet, the SVD decom-
position is of great practical importance.

This is probably typical of the attitude of “pure mathe-
maticians”. However, the proof hinted at in Bourbaki is
quite elegant.

Theorem 2.1.3 Given a Euclidean space E of di-
mension n, for every linear map f : E → E, there are
two positive self-adjoint linear maps h1: E → E and
h2: E → E and an orthogonal linear map g: E → E
such that

f = g ◦ h1 = h2 ◦ g.

Furthermore, if f has rank r, the maps h1 and h2

have the same positive eigenvalues µ1, . . . , µr, which
are the singular values of f , i.e., the positive square
roots of the nonnull eigenvalues of both f ∗ ◦ f and
f ◦ f ∗. Finally, g, h1, h2 are unique if f is invertible,
and h1 = h2 if f is normal.



2.1. POLAR FORM 37

In matrix form, Theorem 2.2.1 can be stated as follows.

For every real n× n matrix A, there is some orthogonal
matrix R and some positive symmetric matrix S such
that

A = RS.

Furthermore, R,S are unique if A is invertible. A pair
(R,S) such that A = RS is called a polar decomposition
of A.

Remark : If E is a Hermitian space, Theorem 2.1.3 also
holds, but the orthogonal linear map g becomes a unitary
map.

In terms of matrices, the polar decomposition states that
for every complex n× n matrix A, there is some unitary
matrix U and some positive Hermitian matrix H such
that

A = UH.



38 CHAPTER 2. SINGULAR VALUE DECOMPOSITION (SVD) AND POLAR FORM

2.2 Singular Value Decomposition (SVD)

The proof of Theorem 2.1.3 shows that there are two
orthonormal bases (u1, . . . , un) and (v1, . . . , vn), where

(u1, . . . , un)

are eigenvectors of h1 and

(v1, . . . , vn)

are eigenvectors of h2. Furthermore,

(u1, . . . , ur)

is an orthonormal basis of Im f ∗,

(ur+1, . . . , un)

is an orthonormal basis of Ker f ,

(v1, . . . , vr)

is an orthonormal basis of Im f , and

(vr+1, . . . , vn)

is an orthonormal basis of Ker f ∗.

Using this, we immediately obtain the singular value de-
composition theorem.
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Theorem 2.2.1 Given a Euclidean space E of di-
mension n, for every linear map f : E → E, there are
two orthonormal bases (u1, . . . , un) and (v1, . . . , vn) such
that if r is the rank of f , the matrix of f w.r.t. these
two bases is a diagonal matrix of the form

µ1 . . .
µ2 . . .

... ... . . . ...
. . . µn


where µ1, . . . , µr are the singular values of f , i.e. the
(positive) square roots of the nonnull eigenvalues of
f ∗ ◦ f and f ◦ f ∗, and µr+1 = . . . = µn = 0. Further-
more, (u1, . . . , un) are eigenvectors of f ∗◦f , (v1, . . . , vn)
are eigenvectors of f ◦ f ∗, and f (ui) = µivi when
1 ≤ i ≤ n.

Note that µi > 0 for all i (1 ≤ i ≤ n) iff f is invertible.
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Theorem 2.2.1 can be restated in terms of (real) matrices
as follows.

Theorem 2.2.2 For every real n×n matrix A, there
are two orthogonal matrices U and V and a diagonal
matrix D such that A = V D U>, where D is of the
form

D =


µ1 . . .

µ2 . . .
... ... . . . ...

. . . µn


where µ1, . . . , µr are the singular values of f , i.e. the
(positive) square roots of the nonnull eigenvalues of
A>A and A A>, and µr+1 = . . . = µn = 0. The
columns of U are eigenvectors of A>A, and the columns
of V are eigenvectors of A A>. Furthermore, if
det(A) ≥ 0, it is possible to choose U and V so that
det(U) = det(V ) = +1, i.e., U and V are rotation
matrices.

A triple (U,D, V ) such that A = V D U> is called a
singular value decomposition (SVD) of A.
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Remarks . In Strang [?], the matrices U, V,D are de-
noted as U = Q2, V = Q1, and D = Σ, and a SVD
decomposition is written as A = Q1ΣQ>

2 .

This has the advantage that Q1 comes before Q2 in
A = Q1ΣQ>

2 . This has the disadvantage that A maps
the columns of Q2 (eigenvectors of A>A) to multiples of
the columns of Q1 (eigenvectors of A A>).

The SVD also applies to complex matrices.

In this case, for every complex n×n matrix A, there are
two unitary matrices U and V and a diagonal matrix D
such that

A = V D U ∗,

where D is a diagonal matrix consisting of real entries
µ1, . . . , µn, where µ1, . . . , µr are the singular values of f ,
i.e. the positive square roots of the nonnull eigenvalues
of A∗A and A A∗, and µr+1 = . . . = µn = 0.
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It is easy to go from the polar form to the SVD, and
backward.

Indeed, given a polar decomposition

A = R1S,

where R1 is orthogonal and S is positive symmetric, there
is an orthogonal matrix R2 and a positive diagonal matrix
D such that S = R2D R>

2 , and thus

A = R1R2D R>
2 = V D U>,

where V = R1R2 and U = R2 are orthogonal.
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Going the other way, given an SVD decomposition

A = V D U>,

let R = V U> and S = UD U>.

It is clear that R is orthogonal and that S is positive
symmetric, and

RS = V U>UD U> = V D U> = A.

Note that it is possible to require that det(R) = +1 when
det(A) ≥ 0.

Theorem 2.2.2 can be easily extended to rectangular
m× n matrices (see Strang [?]).

As a matter of fact, both Theorems 2.1.3 and 2.2.1 can
be generalized to linear maps f : E → F between two
Euclidean spaces E and F .
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In order to do so, we need to define the analog of the
notion of an orthogonal linear map for linear maps
f : E → F .

By definition, the adjoint f ∗: F → E of a linear map
f : E → F is the unique linear map such that

〈f (u), v〉2 = 〈u, f ∗(v)〉1

for all u ∈ E and all v ∈ F .

Then, we have

〈f (u), f(v)〉2 = 〈u, (f ∗ ◦ f )(v)〉1

for all u, v ∈ E.
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Letting n = dim(E), m = dim(F ), and p = min(m, n),
if f has rank p and if for every p orthonormal vectors
(u1, . . . , up) in (Ker f )⊥, the vectors (f (u1), . . . , f (up))
are also orthonormal in F , then

f ∗ ◦ f = id

on (Ker f )⊥.

The converse is immediately proved.

Thus, we will say that a linear map f : E → F is weakly
orthogonal if is has rank p = min(m, n) and if

f ∗ ◦ f = id

on (Ker f )⊥.

Of course, f ∗ ◦ f = 0 on Ker f .

In terms of matrices, we will say that a real m×n matrix
A is weakly orthogonal iff its first p = min(m, n) columns
are orthonormal, the remaining ones (if any) being null
columns.
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This is equivalent to saying that

A>A = In

if m ≥ n, and that

A>A =

(
Im 0m,n−m

0n−m,m 0n−m,n−m

)
if n > m.

In this latter case (n > m), it is immediately shown that

A A> = Im,

and A> is also weakly orthogonal. Weakly unitary linear
maps are defined analogously.
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Theorem 2.2.3 Given any two Euclidean spaces E
and F , where E has dimension n and F has dimen-
sion m, for every linear map f : E → F , there are
two positive self-adjoint linear maps h1: E → E and
h2: F → F and a weakly orthogonal linear map
g: E → F such that

f = g ◦ h1 = h2 ◦ g.

Furthermore, if f has rank r, the maps h1 and h2

have the same positive eigenvalues µ1, . . . , µr, which
are the singular values of f , i.e., the positive square
roots of the nonnull eigenvalues of both f ∗ ◦ f and
f ◦ f ∗. Finally, g, h1, h2 are unique if f is invertible,
and h1 = h2 if f is normal.

In matrix form, Theorem 2.2.3 can be stated as follows.

For every real m × n matrix A, there is some weakly
orthogonal m×n matrix R and some positive symmetric
n× n matrix S such that

A = RS.
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Remark : If E is a Hermitian space, Theorem 2.2.3 also
holds, but the weakly orthogonal linear map g becomes
a weakly unitary map.

In terms of matrices, the polar decomposition states that
for every complex m× n matrix A, there is some weakly
unitary m × n matrix U and some positive Hermitian
n× n matrix H such that

A = UH.
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The proof of Theorem 2.2.3 shows that there are two
orthonormal bases

(u1, . . . , un)

of E and
(v1, . . . , vm)

of F , where
(u1, . . . , un)

are eigenvectors of h1 and

(v1, . . . , vm)

are eigenvectors of h2.
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Furthermore,
(u1, . . . , ur)

is an orthonormal basis of Im f ∗,

(ur+1, . . . , un)

is an orthonormal basis of Ker f ,

(v1, . . . , vr)

is an orthonormal basis of Im f , and

(vr+1, . . . , vm)

is an orthonormal basis of Ker f ∗.

Using this, we immediately obtain the singular value de-
composition theorem for linear maps f : E → F , where
E and F can have different dimensions.
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Theorem 2.2.4 Given any two Euclidean spaces E
and F , where E has dimension n and F has dimen-
sion m, for every linear map f : E → F , there are two
orthonormal bases (u1, . . . , un) and (v1, . . . , vm) such
that if r is the rank of f , the matrix of f w.r.t. these
two bases is a m× n matrix D of the form

D =



µ1 . . .
µ2 . . .

... ... . . . ...
. . . µn

0 ... . . . 0
... ... . . . ...
0 ... . . . 0


or

D =


µ1 . . . 0 . . . 0

µ2 . . . 0 . . . 0
... ... . . . ... 0 ... 0

. . . µm 0 . . . 0


where µ1, . . . , µr are the singular values of f , i.e. the
(positive) square roots of the nonnull eigenvalues of
f ∗ ◦ f and f ◦ f ∗, and µr+1 = . . . = µp = 0, where
p = min(m, n).
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Furthermore, (u1, . . . , un) are eigenvectors of f ∗ ◦ f ,
(v1, . . . , vm) are eigenvectors of f◦f ∗, and f (ui) = µivi

when 1 ≤ i ≤ p = min(m, n).

Even though the matrix D is an m× n rectangular ma-
trix, since its only nonzero entries are on the descending
diagonal, we still say that D is a diagonal matrix.

Theorem 2.2.4 can be restated in terms of (real) matrices
as follows.
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Theorem 2.2.5 For every real m×n matrix A, there
are two orthogonal matrices U (n×n) and V (m×m)
and a diagonal m×n matrix D such that A = V D U>,
where D is of the form

D =



µ1 . . .
µ2 . . .

... ... . . . ...
. . . µn

0 ... . . . 0
... ... . . . ...
0 ... . . . 0


or

D =


µ1 . . . 0 . . . 0

µ2 . . . 0 . . . 0
... ... . . . ... 0 ... 0

. . . µm 0 . . . 0


where µ1, . . . , µr are the singular values of f , i.e. the
(positive) square roots of the nonnull eigenvalues of
A>A and A A>, and µr+1 = . . . = µp = 0, where
p = min(m, n). The columns of U are eigenvectors of
A>A, and the columns of V are eigenvectors of A A>.



54 CHAPTER 2. SINGULAR VALUE DECOMPOSITION (SVD) AND POLAR FORM

Given a (complex) n×n matrix, A, is there an interesting
relationship between the eigenvalues of A and the singular
values of A?

The following remarkable theorem due to Hermann Weyl
shows the answer is yes!:

Theorem 2.2.6 (Weyl’s inequalities, 1949) For any
(complex) n × n matrix, A, if λ1, . . . , λn ∈ C are the
eigenvalues of A and σ1, . . . , σn ∈ R+ are the singular
values of A, listed so that |λ1| ≥ · · · ≥ |λn| and
σ1 ≥ · · · ≥ σn ≥ 0, then

|λ1| · · · |λn| = σ1 · · ·σn and

|λ1| · · · |λk| ≤ σ1 · · ·σk, for k = 1, . . . , n− 1.

Actually, Theorem 2.2.6 has a converse due to A. Horn
(1954): Given two sequences λ1, . . . , λn ∈ C and
σ1, . . . , σn ∈ R+, if they satisfy the Weyl inequalities,
then there is some matrix, A, having λ1, . . . , λn as eigen-
values and σ1, . . . , σn as singular values.

The SVD decomposition of matrices can be used to define
the pseudo-inverse of a rectangular matrix.


