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From Blind Signal Extraction to Blind Instantaneous
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Abstract—This paper reports a study on the problem of the blind
simultaneous extraction of specific groups of independent compo-
nents from a linear mixture. This paper first presents a general
overview and unification of several information theoretic criteria
for the extraction of a single independent component. Then, our
contribution fills the theoretical gap that exists between extrac-
tion and separation by presenting tools that extend these criteria
to allow the simultaneous blind extraction of subsets with an arbi-
trary number of independent components. In addition, we analyze
a family of learning algorithms based on Stiefel manifolds and the
natural gradient ascent, present the nonlinear optimal activations
(score) functions, and provide new or extended local stability con-
ditions. Finally, we illustrate the performance and features of the
proposed approach by computer-simulation experiments.

Index Terms—Blind-signal extraction, blind signal separation,
independent component analysis, negentropy and minimum en-
tropy, projection pursuit.

I. INTRODUCTION

THE problem of blind-signal extraction (BSE) consists of
the recovery or estimation of part of the non-Gaussian in-

dependent components that appear linearly combined in the ob-
servations. Blind signal separation (BSS) is a special case of
BSE in which one considers the simultaneous recovery of all
the independent components from the observations. These prob-
lems form part of independent component analysis (ICA), an
active field of research that has attracted great interest because
of its large number of applications in diverse fields [1], [2].

The criteria to solve ICA problems are usually mathemati-
cally expressed in the form of the optimization of a function with
some specific properties. These functions have a long history
and different origins. In the late 1970s several objective func-
tions (like kurtosis and standardized negative Shannon entropy)
were proposed by geophysicists to solve the problem of blind
deconvolution [3]–[7]. In the 1980s, part of this work evolved
into a field of statistics named projection pursuit, which was
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concerned with finding interesting low-dimensional informa-
tive views of high-dimensional data sets [8]–[11]. These projec-
tions were automatically obtained by maximizing some indexes
of interest (the standardized absolute cumulants, the exponen-
tial Shannon entropy, Fisher information, etc.). It was nearly
at this time, after the pioneering work of Jutten and Herault
[12], when the field of ICA was created (see [13], [14] and ref-
erences therein), stressing the importance of the Darmois–Ski-
tovitch theorem [15], [16] and proposing new information the-
oretic contrasts as driven criteria to solve the BSS problem
[15]–[30].

ICA can be computationally very demanding if the number
of source signals is large (say, on the order of 100 or more).
In particular, this is the case in biomedical signal-processing
applications such as electroencephalogram/magnetoencephalo-
gram (EEG/MEG) data processing in which the number of sen-
sors (observations) can be larger than 120 and it is desired to
extract only some “interesting” components. Fortunately, BSE
overcomes this difficulty by attempting to recover only a small
subset of desired independent components from a large number
of sensor signals. However, most of the existing BSE criteria
and associated algorithms only recover one independent com-
ponent at a time, or all at the same time (in the case of BSS).
The sequential extraction of several components from the mix-
ture is obtained by alternating BSE with Gaussianization of the
extracted components [11] or with their deflation [33].

The objectives of this paper are twofold. One is to provide evi-
dence that the projection pursuit methodology provides a unified
framework for the different criteria that can solve ICA problems.
The second is to show that the standard approach for separated
treatment of BSS and BSE is somewhat artificial, since there
exists general and unified criteria that can be used in both cases.
We recently outlined briefly in a letter [34] how to extend the
classical criteria for BSS and BSE of one independent compo-
nent to the case of simultaneous blind source extraction of an
arbitrary subgroup of independent compo-
nents, where is specified by the user. In this paper, we further
develop this approach and complete it with full proofs of the re-
sults.

The structure of the paper is as follows. Section II specifies
the considered signal model and notation. Section III illustrates
the difficulties in the direct extension of some criteria from BSS
to BSE. Section IV discusses and provides an overview of the
existing contrast functions that are suitable for extraction of a
single independent component, and Section V introduces the
tools that extend these functions to allow simultaneous extrac-
tion of arbitrary subsets of independent components. Section VI
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860 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 4, JULY 2004

Fig. 1. Considered signal model for simultaneous BSE.

analyzes BSE criteria that take into account the additional in-
formation such as the probability density functions (pdf) of the
desired sources. In Sections VII and VIII, we consider the use of
the natural gradient on the Stiefel manifold to perform the con-
strained optimization of the specific contrast functions. We also
present practical upper bounds for the step size of the algorithm
derived from the asymptotical-stability analysis. These bounds
allow us to dramatically improve the convergence speed of the
learning algorithm. Section IX discusses exemplary simulation
results and finally, Section X presents the conclusions.

II. SIGNAL MODEL AND NOTATION

Let us consider the signal model of Fig.1, where un-
known, statistically independent source signals, usually called
sources or components are drawn from a random vector process

. The sources are linearly mixed
in the memoryless system, described by a nonsingular mixing
matrix , to give the vector of observations

(1)

It is commonly assumed that the vector of sources has a
mean of zero and a normalized-covariance matrix ( ,

), where denotes the expectation operator
and the identity matrix of dimension . Without loss
of generality, we consider that the unknown mixing matrix is
orthogonal

(2)

because the orthogonality of the mixing matrix can be always
enforced by performing prewhitening on the original observa-
tions. For the sake of mathematical simplicity with some of the
studied criteria, we will not address, in this paper, the case of
noisy data. From hereafter, since the mixing system is memory-
less, we will drop the time index when referring to the random
variables of the considered processes. Under these hypotheses,
the determinant of the mixing system simplifies to unity,

, and the joint density of the observations is coincident with the
product of marginal densities of the sources

(3)

Under the linear mixing model (1), the Darmois–Skitovitch
theorem [16] guarantees the identifiability of the original non-
Gaussian sources from the observations up to a permutation
and scaling of them. Then, in order to extract non-Gaussian
sources from the mixture (where ), the observations
will be processed by a linear and memoryless extracting system
characterized by an semiorthogonal matrix satisfying

. This yields the vector process of outputs or esti-
mated sources

(4)

where is the global transfer matrix (of dimensions
) from the sources to the outputs. The semiorthogonality

of the extracting and global transfer matrices will be impor-
tant for preserving the spatial decorrelation of the outputs since

.
In this paper, we adopt the following notation. We work with

normalized random variables (those with zero mean and unit
variance) and, according to the standard notations, we employ
capital letters for random variables and lowercase letters for the
samples of these variables. For any given random variable
with mean and covariance , the notation spec-
ifies a normal (Gaussian) random variable with the same mean
and covariance. Similarly, represents a Gaussian random
vector with the same mean and covariance matrix as the random
vector . The th order autocumulant of the random variable
is denoted by . The joint differential entropy
of the random vector with density is expressed as

(5)

with the convention that . We assume that the log op-
erator denotes the natural logarithm, so the entropy will be spec-
ified in nats. For a Gaussian random vector of dimension with
uncorrelated and normalized components, we have

. The Kullback–Leibler divergence, or relative en-
tropy between two continuous multivariate densities and

, of the same dimension, is defined as

(6)

This divergence is nonnegative , with equality
only if almost everywhere [31].

Sometimes, it will be useful to complete the output vector
from dimension to dimension . This

is done by defining a complementary output vector of random
variables orthogonal to , and
grouping them together in a new virtual-output vector process

whose covariance is the identity matrix, i.e.
.

III. DOES THE NATURAL CRITERION FOR BSS EXTEND TO

BSE?

The most natural criterion for BSS of sources is based on
the minimization of the mutual information of the outputs

(7)

since the independence of the sources and the non-Gaussianity
of at least of them are the key assumptions in this problem
[15]. This was the starting approach for several interesting BSS
algorithms. The main difficulty in applying this criterion is the
necessity to estimate the joint entropy of the outputs, since this
involves the estimation of their joint pdf, a nontrivial task that
would require an extensive amount of data and computational
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resources. However, if the observations are prewhitened and
under the spatial decorrelation constraint of the outputs, the joint
entropy is kept constant and
the criterion can now be implemented.

Unfortunately, the minimum mutual-information criterion
does not extend directly to the blind extraction of
signals. On the contrary to the BSS case, having -independent
outputs does not necessarily correspond to the extraction of one
independent component at each output. At the minima of

(8)

the sources split into -disjoint groups and each of the in-
dependent outputs still can be a mixture of sources within the
same group.

Since the direct extension seems to fail, a question arises:
What are the suitable criteria for BSE? When trying to answer
this question in this paper, one of our results will suggest that
the maximization of the following contrast function:

(9)

is a quite natural criterion for the extraction of subsets of
sources at the outputs. As we will show in forthcoming sec-
tions, the justification of this result has its roots, in part, in the
methodology of projection pursuit density estimation (PPDE)
of the observations proposed by Friedman et al. [9]. PPDE is
a parametric technique that estimates the multivariate density
of the observations and has the special feature that the
search can be carried out in a low-dimensional setting (usually
univariate), trying thereby to avoid the curse of dimensionality.

In PPDE, one first chooses an initial density estimate
that reflects all the a priori knowledge of the data and that is
maximally noncommittal with regard to the missing informa-
tion. Let denote the th row of the separating (or extracting)
matrix ; the method iteratively constructs factorial improved
estimates of the form

(10)

where the augmenting function and the one-dimensional
projection of the observations are chosen in such a
way that they maximize the relative increment in the fit

(11)

IV. EXTRACTION OF A SINGLE SOURCE

When recovering a single independent component, the ex-
tracting system will be a row vector of unit norm and there
will be a single–output that we will denote as . In this sec-
tion, we will assume a completely blind scenario where one
knows only the observations and the existence of at least one
non-Gaussian independent component in the mixture. However,
there is no a priori information about the mixing matrix nor
about the density of the desired source.

A. Contrast Functions and Indexes of Interest

To overcome the difficulties associated with the high dimen-
sionality of the joint densities, we avoid working explicitly with
them. With this aim, Huber suggested in [10] to find a functional

that maps the pdf of the output random variable to a real
index which satisfies

(12)

with equality only if is, at least, equivalent (in some given
sense) to one of the independent components. Therefore, a
proper optimization of will lead to the extraction of one
independent component.

Since the affine transformations of the one-dimensional
random variable are not relevant to this problem, a good
class of functionals are those that are invariant for all
the members of the equivalence class defined by the affine
transformations of the argument, i.e., the ones that satisfy

, , . An alternative
approach consists of using semiorthogonal indexes .
A semiorthogonal index will constrain the argument of the
functional to be a normalized random variable (of zero mean
and unit variance), avoiding, in this way, the affine invariance
requirement.

The properties of the Huber’s indexes are similar and
related to the properties of contrast functions introduced inde-
pendently by Donoho [7] and by Comon [15]. Indexes and con-
trasts represent, in fact, equivalent concepts.

Some of the results of this paper will apply to the class of
the semiorthogonal contrast functions that impose the
constraint on the outputs to be normalized random variables and
that possess the following important properties:

Property 1: The contrast function satisfies a weak form
of strict convexity, which is defined only with respect to the
linear combinations of the independent components, in the sense
that, if and , then

(13)

where, for , the equality holds true if and only if one
of the independent components is extracted.

Property 2: The contrast function is always nonnegative
and by convention, we can assign to the value zero when
the argument is a random variable with Gaussian distribution.

These properties are consistent with the idea of assigning to
the independent components the local maxima of the index of
interest over certain subspaces (property 1) and to the Gaussian
distribution the least interesting index (property 2). More specif-
ically, let us consider an ordering of the independent compo-
nents such that . Properties 1
and 2 imply that the th source maximizes over the sub-
space spanned by the linear combinations of the independent
components that range from to . Consequently, whenever
they hold true, will be a global maximum of the index of in-
terest.

In the following sections, we will see that most of the known
information theoretic criteria for the blind extraction of a single
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source can be unified, interpreted, and represented in terms of an
approximation to the density of the observations (the projection-
pursuit density-estimation methodology). Some of the criteria
are shown to be equivalent in the sense that they lead to the same
contrast function.

B. The Negentropy and Minimum-Entropy Criteria

One of the key assumptions in the ICA/BSE problem is that
the sources are mutually independent. Another two practical
simplifying assumptions are that and .
The most reasonable initial approximation of the density of
the observations is the less biased estimate on the basis
of the previous information [32]. The density estimate that is
maximally noncommittal with regard to the missing informa-
tion, is given by the -dimensional normalized-Gaussian den-
sity , which maximizes the
differential entropy among all the distributions with the
given mean and covariance [31]. Note that this initial choice
corresponds to the factorial decomposition of the density of the
observations in -independent Gaussian marginals

(14)

for any arbitrary orthogonal transformation .
After the initial approximation has been chosen, PPDE tries

to improve the fit of the estimate to the true density of the obser-
vations by means of a new multiplicative factor or augmenting
function , which incorporates additional information
from the output. The new estimate
is then optimized by maximizing the index (11) with respect to
the functional , while keeping the initial constraints. The
projection-pursuit index simplifies for this case to

(15)

(16)

where the second divergence term at the right (which accounts
for all the dependence with ) is nonnegative and equal to
zero only for the optimal augmenting function [9]

(17)

for which one replaces the initial Gaussian marginal of the
output in (14) by its corresponding true density, resulting
the negentropy-density estimate of the observations

(18)

The optimized index with respect to the functional form of the
factor simplifies to

(19)

and after the fit, the projection pursuit density estimation cri-
terion reduces to find the density of the output or, equiva-
lently, the vector , which maximizes the divergence from the

Gaussian density. This is usually known as the negentropy cri-
terion [2], [15] in ICA. However, its origins are much older and
can be traced back to the minimum entropy-criterion proposed
by Godfrey [4] and Donoho [7] in single-channel blind decon-
volution. This later criterion consists of finding the linear pro-
jection of the observations that minimizes the output entropy
subject to a constant covariance constraint

(20)

This is equivalent to maximizing the Negentropy contrast func-
tion

(21)

Thus, both criteria (minimum entropy and negentropy) are equiv-
alent and can be interpreted in terms of a fitting to the observa-
tions density.

The following lemma (from [31]) provides a lower bound on
the differential entropy of a sum of two independent random
variables in terms of their individual differential entropies.

Lemma 1 (Entropy Power Inequality): If and are inde-
pendent continuous random variables, then

(22)

with equality, if and only if , are Gaussian.
Using this lemma, we prove in Appendix that the negentropy

index satisfies properties 1 and 2. Therefore

(23)

with equality only when is one of the independent compo-
nents, i.e., it will be one of the sources if is posi-
tive or an arbitrary linear combination of Gaussian sources if

. Thus, the global maximum of the contrast func-
tion is only achieved at the extraction of the independent com-
ponent with smallest differential entropy (let us assume that this
component is ). Accordingly, the Negentropy criterion seems
to guide us to a form of Occam’s razor principle: the best fit
is obtained for , when one
chooses the simplest, the least uninformative or most structured
projection to explain the density of the observations.

C. Divergence From the Uniform Density

Let us denote with the standard Gaussian distribu-
tion function. The transformation maps the
Gaussian random variable to a uniform random variable

, with bounded support in [0, 1].
The divergence from the uniform density is a criterion orig-

inally proposed by Claerbout [5] and later, independently, by
Friedman et al. [11]. This criterion is based on the maximiza-
tion of the relative entropy of a transformed density of the output

with respect to the uniform density

(24)

Again, the criterion chooses the simplest model in the sense of
minimizing the differential entropy of the transformed output.
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For this reason, Claerbout called it minimum information de-
convolution.

Since the relative entropy is invariant under non-
linear invertible transformations , we have that

, with the result that the di-
vergence from the uniform density is just an alternative
expression for the negentropy index

(25)

D. Cumulants Based Indexes

The indexes based on cumulants have a long history and sev-
eral authors have proposed them in many different ways and
forms [3], [15], [27], [37]. The higher order cumulants of the
outputs can be used in data corrupted by additive Gaussian noise
because they are asymptotically invariant to the presence of such
noise in the mixture. For finite samples this result is only ap-
proximate and usually does not hold for signal-to-noise ratios
(SNRs) that are too low.

One general form of the cumulant based index, for normal-
ized random variables, is given by

(26)

where denotes the modulo of the th-order autocumulant,
are nonnegative weighting factors such that

, and the exponents are greater than or equal
to unity. Typically, when only one cumulant order is
involved and if a set of different cumulants are to be
jointly maximized.

The cumulant index also satisfies Properties 1 and 2 (see sub-
section B of the Appendix). Therefore

(27)

with equality only for the extraction of one of the independent
components , provided that . Note
that for the Gaussian distribution , since the
higher-order cumulants of Gaussian processes are all zero.

V. SIMULTANEOUS EXTRACTION OF OF THE SOURCES

As we have seen in the previous section, the blind extraction
of one of the non-Gaussian sources is obtained by solving the
following constrained maximization problem:

(28)

It is well known, however, that the BSS of the set of all the
sources (being at most one Gaussian) is obtained by maximizing

(29)

In this section, we will try to fill the theoretical gap between
both previous approaches, showing that there is a continuum of
contrasts of the form

(30)

Such a contrast function is suitable for the whole range of sub-
problems (from the extraction of a single independent compo-
nent to the simultaneous extraction of all the independent com-
ponents ), and only involve the use of univariate
densities. The following theorem, proved in Appendix, estab-
lishes a fundamental result for any contrast function sat-
isfying properties 1 and 2.

Theorem 1: Given a set of positive constants
and a functional that satisfies properties 1–2, if

the sources can be ordered by decreasing value of this functional
as

(31)

and if , then, the following objective function

(32)

will be a contrast function whose global maxima correspond to
the extraction of the first sources from the mixture. If, addi-
tionally, and , then
the global maximum is unique and corresponds to the ordered
extraction of the first sources of the mixture, i.e., the global
maximum is .

If we do not need to extract the components in any specific
order, we can simply set and obtain
the following special cases:

1) The cumulant contrast function for extraction of of the
sources, with largest cumulant index, is

(33)
2) The marginal negentropy contrast function for the extrac-

tion of the of the sources, with minor entropy, is

(34)

Remark: We call this a marginal negentropy contrast func-
tion to distinguish it from the negentropy function

(35)

which results from applying the PPDE approach when consid-
ering multivariate statistics. Note that for , both coin-
cide , but for , the negentropy
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function is not a valid contrast function for the ex-
traction of sources. This is because it is maximized for all
the output vectors that belong to the subspace spanned by the

sources of lowest entropy. However, subtracting from it the
mutual information of the outputs, one obtains the marginal ne-
gentropy contrast function, which results from the application
of the theorem

(36)

There is a very interesting interpretation of the role played by
each term of this index. The first term on the right acts as a
preprocessing step that removes uninteresting sources
by reducing the original nonsquare BSE problem into a
BSS problem. The second term on the right is the minimum
mutual-information contrast function that will eventually solve
the resulting BSS problem.

VI. THE PARTIALLY BLIND ICA PROBLEM

Now we consider a partially blind or semiblind scenario in
which the densities of the interesting or desired sources are as-
sumed to be known and are non-Gaussian. The maximum likeli-
hood and infomax criteria can incorporate relatively easily this
additional information in the BSS case . In this sec-
tion, we will extend these criteria to the case of BSE .
To allow us to identify the set of -desired sources from the set
of their densities, we will assume that there is a one-to-one cor-
respondence between both sets, i.e., that the -desired densities
also determine the set of -desired sources.

A. Maximum Likelihood

The maximum likelihood (ML) criterion for BSS is very pop-
ular in the ICA research community because its optimization de-
pends only on the score functions of the densities of the sources
(see [23] and [29]). In the following, we present the extension
of this criterion to BSE. It should be noted that despite the sim-
ilar form of the resulting ML criterion for BSE, optimization is
much more difficult to perform.

When one knows a priori, the probability density function of
the desired sources , , it seems reasonable
to consider a factorial model for the joint-probability density
function of the observations as in

(37)

where is the known joint pdf
of the subset of desired sources, while is a complemen-
tary pdf which condenses all the remaining ignorance about the
model.

Assuming a stationary i.i.d. vector process of observations
and a sufficiently long sequence of samples drawn from

it, by the weak law of large numbers, the normalized log likeli-
hood converges in probability to

(38)

By maximizing this function, one automatically minimizes the
divergence between the true pdf of the observations and that

of the estimate, as a consequence of the following relationship
between both quantities

(39)

The maximum likelihood with respect to the unknown pdf
is obtained by decomposing the divergence

(40)
and noting that , with equality only if

almost everywhere. Thus, the best estimate with respect
to is

(41)

Substituting this result in the log-likelihood function and re-
moving the constant term gives the maximum-likelihood con-
trast function for extraction of the desired sources

(42)

subject to . Thus, maximizing the
likelihood of the observations is equivalent to minimizing the
Kullback–Leibler divergence between the joint density of the
outputs and that of the desired sources. Rewriting the maximum-
likelihood contrast function as

(43)

we note that it depends not only on the densities of the sources,
but also on the joint differential entropy of the outputs ,
whose optimization is now much more difficult than in the BSS
case and, for , involves working with multivariate statis-
tics. However, considering an upper bound for the ML contrast
function, one obtains the marginal maximum-likelihood (MML)
contrast function

(44)

(45)

for which only univariate marginal densities are necessary. The
global maximum of is only attained when
we extract the sources with the desired densities. The proof of
this result follows from the application of the Darmois–Ski-
tovitch theorem [16] together with the observation that each
term is always nonpositive and it reaches the
maximum value (which is zero) only if almost
everywhere.

Fig. 2 graphically illustrates the relationship between the dif-
ferent criteria for BSE. The divergences between densities in the
plot play the role of squared distances [29], [31]. In the figure,

refers to the joint density of the sources with the lowest
differential entropy. Thus, the position of the joint density of the
observations is upper bounded by a hypersphere with its
center in the Gaussian density and squared radius .
If the observations are a linear combination of only sources,
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Fig. 2. The Pythagorean decomposition of the divergence illustrates the
relationship between the different criteria. The drawing illustrates the case in
which N > P > 1. The divergences between densities in the plot play the
role of squared distances. The asymmetry of the Kullback–Leibler divergence
D(�k�) is reflected using arrows which depart from the first density toward the
second density.

we have a reduced BSS problem for which is located at
some point on the hypersphere. It is clear from the figure that
the maximization of one of the following criteria: ,

and , solves the BSE problem
( converges to ); whereas the maximization of
or the minimization of does not.

B. Information Maximization

For BSS, the connection between the information maximiza-
tion principle and maximum likelihood criterion is supported
in [21]. A similar connection still holds true for BSE, but with
an important difference with respect to the BSS case; the blind
form of the infomax criteria does not give a valid contrast func-
tion for BSE.

The information maximization principle (infomax) was pro-
posed by Linsker [17] and was motivated by analysis of the sen-
sory system. The principle suggests that the layers of a sensory
network are adapted to the environment in their attempt to pre-
serve as much information as possible, which is achieved by
maximizing the transfer of information through the layer of neu-
rons. The extraction system followed by a bank of nonlinearities

, , is a layer of neurons.
The infomax principle consists in maximizing the differen-

tial entropy of the nonlinear, bounded transformation
of the outputs, i.e., maximizing

(46)

Nadal and Parga proved [18] that the maximum of the in-
fomax principle, with respect to the functional form of the non-
linearity, is obtained when each matches with , the
cumulative distribution function of the corresponding output .
This result can be better understood after rewriting the infomax
index as the opposite of the divergence of the joint density
from the -dimensional uniform density with support in

(note that is zero) and using the
Pythagorean decomposition of this divergence

(47)

(48)

The first term on the right-hand side accounts for the lack
of independence of the outputs, whereas the second term
accounts for the departure from the optimal nonlinearities.
Based on these ideas, Bell and Sejnowski developed a suc-
cessful implementation of the infomax algorithm for ICA
[19]. In a BSE case, even for the optimal nonlinearity (i.e.,
when ), the independence
of the outputs does not guarantee the extraction of any of
the sources (see Section III), and the infomax principle fails.
However, when one uses the a priori information about the
desired densities to constrain the form of the nonlinearity,
the infomax approach reduces to the ML contrast function
suitable for the extraction of the sources. Let denote
the joint-cumulative distribution function of the independent
sources we want to extract, then it holds

(49)

Adding one obtains the marginal form of the con-
trast function (which only involves univariate statistics)

(50)

There is a striking parallel in the relationship between in-
fomax and the maximum likelihood criteria, and that between
the divergence from the uniform distribution (minimum infor-
mation) and the negentropy entropy criteria. But, at the same
time, there is a clear difference, since infomax maximizes the
differential entropy of the transformed random variable (46),
whereas the divergence from the uniform distribution (24) min-
imizes it.

C. The Entropy-Likelihood Criterion

By analyzing the ML-density estimate of (41), one
can see that it uses the conditional density , which is
unavailable information. Therefore, this density should be re-
placed by the least biased density estimate which is consistent
with the normalized mean and covariance, i.e., the maximum
entropy estimate . With this substitution, one obtains
the entropy-likelihood estimate

(51)

In similarity with the PPDE approach, we consider as
a contrast function the relative improvement in the fit to
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TABLE I
ESTIMATES OF THE JOINT DENSITY OF THE OBSERVATIONS, ASSOCIATED WITH

THE DIFFERENT CRITERIA FOR THE EXTRACTION OF P SOURCES

the true density of the observations, between the initial
estimate and the improved estimate

(which results from the knowledge of the
densities of the desired sources)

(52)

(53)

(54)

This function, which resembles the contrast function for extrac-
tion proposed in [39] from a different perspective, is very attrac-
tive because the density estimation of the outputs is no longer
needed. A novel interpretation of the contrast function results
from the observation that its associated criterion is a combina-
tion of the negentropy and maximum likelihood criteria,

(55)

Hence, we name this criterion the entropy-likelihood. In (55)
the first term tries to increase the divergence from Gaussianity,
whereas the second one tries to fit the distributions of the out-
puts to the desired ones. Both objectives are compatible (simul-
taneously maximized) if the desired sources are those with the
lowest differential entropy in the mixture, i.e.,
for , and, in this case, the extraction
solution is a global maximum of . When this con-
dition is not satisfied, the entropy-likelihood contrast function
still holds locally in the vicinity of the desired sources (see the
discussion after corollary 1 in Section VIII), but the desired ex-
traction solution is only guaranteed to be a local maximum of

.
Table I summarizes the different estimates of the joint pdf of

the observations, associated with the criteria for the extraction
of sources.

VII. THE EXTRACTION ALGORITHM AND THE NON-LINEAR

(SCORE) FUNCTIONS

A particularly simple and useful method to maximize any
chosen contrast function subject to the constraint
is to use the natural gradient ascent in the Stiefel manifold of
semiorthogonal matrices [38], which is given by

(56)

where is the usual gradient. The application of the natural
gradient algorithm to solve the problem of simultaneous BSE

was proposed by Amari [39]. Using the chain rule, one can see
that

(57)

where is a diagonal matrix of
ordering constants, is the sample
cross-correlation matrix between specific nonlinearities
and the observations, and the vector of nonlinearities

is a
vector function which depends on (the stochastic form of
the indexes ).

The resulting natural gradient algorithm takes the following
simple form:

(58)

(59)

The nonlinearities for the entropy-likelihood contrast func-
tion are the score functions of the densities of the desired
sources , so they can be com-
puted when this information is known. This is not necessary for
the marginal-negentropy contrast function since approxima-
tions for the nonlinearities
have been obtained in [15] and in [22] by using the truncated
Edgeword and Gram–Charlier expansions of the marginal pdfs
of the outputs in the vicinity of the Gaussian distribution (a dif-
ferent estimation procedure is presented in the appendix of [4]).
The nonlinearities for the marginal maximum-likelihood cri-
teria take the form of .
However, in practice, these estimates may not always perform
well, since close to the extraction of any of the sources the
distribution of the output is far from being close to the Gaussian
and the truncated expansions no longer result accurate.

A good alternative approach is the cumulant-based index, be-
cause for it, the general form of the nonlinearity can be obtained
without approximations, and it is universal in the sense that it
will work under the weak condition that each of the desired in-
dependent components has a nonzero index. The nonlinearity
of the cumulant index is a linear combination of partial non-
linearities , where each one is related to the th-order
cumulant, i.e.,

(60)

The expressions of the partial nonlinearities are explicitly shown
in Table II up to order seven, although, in practice, cumulants
with order are not usually used by themselves, but as
complementary information, since their precise estimation re-
quires a large number of samples.

Our objective is to extract the desired independent compo-
nents, i.e., the source signals with the largest indexes .
Since we use a gradient algorithm, it can be trapped in the local
maxima of the contrast function corresponding to other valid ex-
tracting solutions or to defective solutions (provided they exist).
Therefore, in general, there is no guarantee that one will always
achieve the global maximum solution in one single stage of ex-
traction, and thus, the local search should be combined with
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TABLE II
PARTIAL ACTIVATION FUNCTIONS ' (�) ASSOCIATED WITH rth-ORDER CUMULANTS

some kind of global search procedure and test for the validity
of the solution. When the desired sources are extracted, one can
stop the search. Otherwise, the extraction procedure can be re-
peated starting from a different initial condition or after per-
forming the deflation of the extracted components (see [33] for
more details on deflation). The procedure can be stopped when
one recovers the desired sources or when all the recovered in-
dependent components in the last extractions exhibit small in-
dexes.

VIII. STABILITY ANALYSIS OF THE ALGORITHM

In this section, we study the local convergence of the algo-
rithm. We consider an arbitrary vector of nonlinearities

and denote the th nonlinearity briefly
as when acting on the corresponding extracted
source.

When a sufficiently small step size is used, the extraction
solutions should be attractors for the gradient algorithm, pro-
vided that they are maxima of the corresponding semiorthog-
onal contrast function. However, the imprecise estimation of the
nonlinearity associated with the function sometimes
changes the status of the contrast function in such a way that the
approximated function no longer produces a maximum in
the extraction solution, but another kind of critical point. This
is one of the reasons that justifies interest in the analysis of the
local convergence of the algorithm for an arbitrary nonlinearity.
A second reason is that it is useful to establish possible ade-
quate step sizes that ensure a high convergence rate and simul-
taneously guarantee the stability of the algorithm. The next the-
orem presents bounds for the learning step size resulting from
the asymptotical stability analysis of the algorithm.

Theorem 2: Assuming that the mixing system is orthogonal,
the necessary and sufficient local stability conditions of the gra-
dient algorithm in the Stiefel manifold (59) to converge to a true
solution are, for all , , given by

(61)

(62)

(63)

where the variables that control the local stability
are given by1

(64)

The proof of the theorem can be found in the Appendix and is
based on the analysis of the linearized dynamic of the algorithm
around the extraction solution. A similar study was previously
used in [40] to find the local stability conditions of the EASI
algorithm. In our analysis we focus on the BSE algorithm, and
we provide bounds for the learning step size. The linearized
analysis of the algorithm also reveals a simple estimate for the
step size that guarantees stability and a fast convergence. If

, a good (close to the optimum) candidate for
the step size at iteration is

(65)

The results of the following corollaries, when substituted in
(65) and in (61)–(63), assist in clarifying the choice and the
bounds for the learning step size.

Corollary 1: When the nonlinear functions match the
score functions of the distribution of the extracted sources

in a local neighborhood of the
extraction solution, the factors that control the local stability of
the algorithm can be expressed as

(66)

(67)

(68)

The proof of this corollary is presented in the Appendix and
its interpretation is the following. In (a) the definition of
takes the form of standardized Fisher information, whereas in
(b) its interpretation is stressed as a factor that expresses devia-
tion from Gaussianity (note that only for the Gaussian
distribution). In fact, this function is by itself a contrast
function maximized by one of the independent components in
the mixture and is minimized by the Gaussian distribution [10].
From the corollary we observe that, for the proper step sizes,
the gradient ascent algorithm is locally convergent to any of

1The � factors were originally defined in [40]. Their definition in Theorem
2 includes the covariance of the sources only for theoretical purposes, since we
have adopted throughout the paper the normalization Cov(S ) = 1 8i.
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Fig. 3. Images of the nine observations after prewhitening.

the extraction solutions consisting of non-Gaussian sources, ev-
idencing that all these solutions are local maxima of the mar-
ginal negentropy and entropy-likelihood contrast functions.

Corollary 2: For the cumulant-based index the factors that
control the local stability can be rewritten as

(69)

The proof of this corollary relies on the fact that the expecta-
tion of the derivative of the nonlinearity for the cumulant-based
index is always zero and, thus from the defi-
nition of , we obtain

(70)

which is always nonnegative for all , even when
the densities of the sources are unknown. Again, the function

of the corollary is by itself a contrast function for blind
extraction.

Incidentally, the behavior of the term is substan-
tially different in both corollaries (it is greater than the unity for
corollary 1 and zero for corollary 2). This indicates that cumu-
lant-based contrasts like (26), which do not involve cross-prod-
ucts of cumulants with different orders, cannot be used to con-
struct accurate approximations of the marginal negentropy or of
the marginal maximum likelihood contrasts.

IX. SIMULATIONS

In the first experiment, we illustrate an interesting theoretical
behavior of the extraction algorithm. To facilitate graphical rep-
resentation of the results, we consider the nine observed images

shown in Fig. 3. These images are prewhitened ver-
sions of the original observations, so they satisfy the decorrela-
tion constraint . The observations were generated
from a random linear combination of nine independent-source
images, whose shapes are barely distinguishable in Fig. 3. The
source images have different kurtosis signs, and two of them are
very close to being Gaussian noise. The kurtosis of the sources

are: {4.2, 3.5, 2, 1.9, 1.6, 1, 1, 0.05,
0.01}.

We chose the criteria based on higher order cumulants, i.e.,
(59) with , . We set the number of sources to extract
to , and applied a batch version of the natural gradient
algorithm with the adaptive step size in (65). Using Corollary 2,
one can see that the recommended step size takes the form

(71)

We started from an initialization ,
which selects as initial outputs the observed images of the
first row. After 16 iterations, the algorithm converged to the first
three extracted sources shown in Fig. 4(a). Then, if these are
not the sources of interest we can remove the contribution of
these sources from the observation and perform a new extrac-
tion. The second extraction started from the observations of
the next row, i.e., , and convergence
was obtained after 19 iterations to produce the three sources of
Fig. 4(b). Finally, the third extraction started from the last ob-
servations ( ) and converged after 22 iter-
ations to produce the three sources of Fig. 4(c). One can clearly
see how the algorithm perfectly recovered the nine source im-
ages.

In agreement with the theoretical results, the algorithm at-
tempts at the first stage to extract the most structured sources
or less random in a certain sense (in this example those with
the largest absolute value of kurtosis), whereas the sources that
are closer to being Gaussian, or those with greater uncertainty,
are typically extracted in the last stage of extractions. However,
since the gradient algorithm has local scope, the result is also
influenced by the initialization. For this reason, it is helpful to
choose a good initialization condition that produces outputs as
close as possible to the desired sources. This can be done di-
rectly by identifying those observations that provide better es-
timates of the desired sources and choosing them as initial out-
puts. This is what has been done in the previous experiment, one
can compare Figs. 3 and 4 to see how initialization influences
determination by the algorithm of which sources are recovered
at each output.

Although the contrast function based on cumulants measures
the departure of the outputs from Gaussianity, we still have some
control to selectively extract source signals with specific sto-
chastic properties through the proper selection of the involved
cumulants orders and the factors and . For instance, if
the sources of our interest have asymmetric distributions, we can
favor their extraction in the first place by weighting more in the
index (26) the skewness and other cumulants of odd order.

To illustrate this possibility, in a second simulation we con-
sider random mixtures of 100 normalized sources. Only five of
them are asymmetric binary sources with probability mass func-
tion , and the remaining
95 are binary symmetric sources with probability mass function

. We favor the simultaneous
extraction of the asymmetric sources from the mixture using an
index based on cumulants of odd order (note that this index will
vanish for the symmetric sources). We chose cumulants of order
3, i.e, and . We set the number of sources
to be extracted to and performed 100 random simula-
tions. The histogram was used to distinguish the desired sources
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Fig. 4. Extraction of the nine sources in groups of three (P = 3). After each extraction a deflation procedure has been applied. a) First extraction: 16 iterations,
	 (y) = 9:6. b) Second extraction: 19 iterations, 	 (y) = 4. c) Third extraction: 22 iterations, 	 (y) = 1:46.

among those estimated. In each simulation, we ran the simulta-
neous extraction algorithm one or several times (with deflation
in between) until all the asymmetric sources were recovered.
In 22% of the experiments we extracted all the desired sources
with just the first run of the algorithm. This quantity increases
to 96% of the experiments if a second run is allowed and to the
100% after the third run.

The interested reader can also apply these algorithms to his
own data or compare them with other existing ones. The natural
gradient algorithm for the contrast function based on cumulants
has been implemented in the ICALAB toolbox [41] for MatLab
under the algorithm name SIMBEC (Simultaneous BSE using
Cumulants).

X. CONCLUSION

In this paper, we have presented a unified interpretation of
several existing information theoretic criteria for BSE by using
the projection pursuit density estimation methodology. Our
main contribution is the development of some tools that allow
the extension of these criteria (already known for extraction of
a single source and for blind source separation) to the case of
simultaneous blind extraction of an arbitrary number of sources

. The natural gradient algorithm in the Stiefel manifold
is a suitable technique for the optimization of the semiorthog-
onal contrasts associated with these criteria. We have analyzed

the local convergence of this algorithm and provided useful
bounds for its learning step size. Finally, we have demonstrated
with some sample experiments the validity of the theoretical
results and the good performance of the proposed algorithm.

APPENDIX

A. Proof of Properties 1 and 2 for the Negentropy Contrast

If we express the normalized random output in terms of the
global transfer system and the sources , we
can apply the entropy power inequality (lemma 1) to see that

(72)

After taking logarithms, we can use this result to upper bound
as

(73)
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where the inequality originates from (72) whereas the in-
equality is a consequence of the strict concavity of the log-
arithm and of the normalization of the global transfer system

. Therefore, we have proved the desired prop-
erty

(74)

with equality only when is one of the independent sources
(being for this case positive) or is an arbitrary
linear combination of Gaussian sources (being for this case,

).
The proof of property 2 stems directly from the properties

of the Kullback–Leibler divergence, which is always nonnega-
tive and equal to zero, only if the two arguments (distributions)
match almost everywhere.

B. Proof of Properties 1 and 2 for the Cumulant Based
Contrast Functions

The proof of property 1 is obtained by bounding the th
higher order cumulant of the output by

(75)

(76)

(77)

where the equality follows from the properties of the cumu-
lants [37]. The inequality results from the fact that the global
system is of unit norm and therefore . The
last inequality holds true trivially for and follows
from the convexity of the power function for .

Property 2 states that the contrast function should be zero for
the Gaussian distribution, i.e., . This is easily
verified since the higher order cumulants of Gaussian processes
are all zero.

C. Proof of Theorem 1

The decorrelation constraint for the outputs
is tantamount to the semiorthogonality of the

global transfer matrix . Let us define the diagonal matrices
and .

From property 2 we have that

(78)

where is a symmetric matrix of eigenvalues
and whose ordered diagonal elements are

.

The proof of the theorem consists of the following main steps:

(79)

(80)

(81)

The first inequality (a) is just a consequence of (78), since
. To prove the second inequality (b)

we resort to the fact that , i.e.,
the ordered set of diagonal elements of are majorized by its
eigenvalues, which means that for

(82)

Thus, taking into account this majorization property and or-
dering of the constants ,
we prove (b) since

where the last inequality follows from (82) and the fact that
for all .

To prove the inequality (c) (81), we must resort to Poincaré’s
separation theorem of matrix algebra, which states that for a
symmetric matrix , with eigenvalues

under the constraint , the diagonal ele-
ments of bound the eigen-
values of , satisfying

(83)

Therefore the maximum of (78), subject to the semiorthogo-
nality of , is

(84)

If , the maximum is only obtained for
those matrices whose rows consist of orthogonal vectors that
span the same subspace of the rows of , which enforces

. From the weak form of strict convexity
that satisfies , which applies to the case of , the
necessary and sufficient condition for the equality between (79)
and (81) is that , i.e., is the ordered extraction
matrix of the first sources.

On the other hand, if , with equality
for certain subsets of the first sources which have a common
value or index under , the necessary and sufficient condition
for the equality between (79) and (81) is that the matrix can
be reduced to the form by permutations among the rows
associated with the sources that share the same index.
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D. Linearized Dynamic of the Extraction Algorithm

Rewriting the natural gradient algorithm of (59) in terms of
the global transfer system one finds

(85)

Since , the algorithm preserves
the first order semiorthogonality of the global transfer system

.
In the vicinity of the extraction solution ,

the linearized form of the iteration completely determines the
local stability behavior of the algorithm. Let us consider that
the vector of independent sources present in the mixture is
split into two parts , where
denotes the random vector of sources that are extracted by the al-
gorithm, whereas, the vector contains
the remaining ones.

Let us perturb the extraction solution by an additive
matrix , of arbitrary small norm, which
preserves the first-order orthogonality of the global system,
i.e., , where the perturba-
tion is skew-symmetric up to the first order, satisfying

. The resulting outputs are given by

(86)

where , and .
The first order Taylor expansion of function at the ex-

traction is

(87)
where is a diagonal matrix of elements

.
The correlation matrix at the extraction is shown in

(88) at the bottom of page. The term van-
ishes in a first order approximation. This is due to the fact that

is an term, while for , the in-
dependence and zero mean assumptions for the sources enforce
that

(89)

Multiplying (88) by yields
. Substituting the result in (85) and, taking into ac-

count that is a diagonal matrix, we obtain the left
and right updates of the global system, respectively, as

(90)

(91)

After truncating higher order terms we rewrite the
previous iterations in terms of the perturbation and of the sta-
bility factors . This gives the lin-
earized dynamic of the algorithm around the extraction point

(92)

(93)

for ; . Thus, the necessary
and sufficient asymptotic stability condition that enforces
and to converge to zero with the run of iterations yields the
presented bounds (61)–(63) for the algorithm step size.

E. Proof of Corollary 1

When the nonlinearities are the score functions of the
densities of the sources, the definition of the stability factors
take the form

(94)
The first expectation with the minus sign is the Fisher in-
formation of the distribution of and can be rewritten as

. Assuming the regularity condition
and integrating by parts, the second

expectation in (94) simplifies to 1. Substituting both results
yields the first desired expression

(95)

(88)
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The second part of the corollary results from the fact that
for a Gaussian random variable , with the same mean and
covariance of , it is verified that

(96)

and that the following cross-term is

(97)
Then, we can replace the constant 1 in (95) by the sum of (96)
and (97). This completes the square

(98)
and grouping the logarithms proves the second part of the corol-
lary.
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