PRACTICAL OPTIMIZATION
Algorithms and Engineering Applications

Andreas Antoniou
Wu-Sheng Lu

Department of Electrical and Computer Engineering
University of Victoria, Canada

@ Springer




106

as decreasing values of z. Constant ¢ in Step 1 determines the precision of
the solution. If £ is very small, say, less than 10~9, then as the solution is
approached, we have

fn—‘l.k = fn—l,k ~ fm,k ~ f'n,k

Consequently, the distinct possibility of dividing by zero may arise in the eval-
uation of xg441. However, this problem can be easily prevented by using
appropriate checks in Steps 6 and 7.

An alternative form of the above algorithm can be obtained by replacing
the quadratic interpolation formula for equally-spaced points by the general
formula of Eq. (4.30). If this is done, the mid-interval function evaluation of
Step 5 is unnecessary. Consequently, if the additional computation required
by Eq. (4.31) is less than one complete evaluation of f(x), then the modified
algorithm is likely to be more efficient.

Another possible modification is to use the cubic interpolation of Sec. 4.6
instead of quadratic interpolation. Such an algorithm is likely to reduce the
number of function evaluations. However, the amount of computation could
increase owing to the more complex formulation in the cubic interpolation.

4.8 Inexact Line Searches

In the multidimensional algorithms to be studied, most of the computational
effort is spent in performing function and gradient evaluations in the execution
of line searches. Consequently, the amount of computation required tends
to depend on the efficiency and precision of the line searches used. If high
precision line searches are necessary, the amount of computation will be large
and if inexact line searches do not affect the convergence of an algorithm, a
small amount of computation might be sufficient.

Many optimization methods have been found to be quite tolerant to line-
search imprecision and, for this reason, inexact line searches are usually used
in these methods.

Let us assume that

Xp+1 = Xk + adg

where d}, is a given direction vector and « is an independent search parameter,
and that function f(xj, 1) has a unique minimum for some positive value of c.
The linear approximation of the Taylor series in Eq. (2.4d) gives

f(xrs1) = F(xx) + gk drex (4.52)

where
df (x3, + ad
oTd, = if ( kd k)
o
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Eq. (4.52) represents line A shown in Fig. 4.14a. The equation

f(xka1) = Fxk) + pgldra (4.53)

where 0 < p < % represents line B in Fig. 4.14a whose slope ranges from 0 to
%g;{dk depending on the value of p, as depicted by shaded area B in Fig. 4.14a.
On the other hand, the equation

f(xg1) = f(xx) + (1 — p)gh dia (4.54)

represents line C in Fig. 4.14a whose slope ranges from gl dy to %gfdk as
depicted by shaded area C in Fig. 4.14a. The angle between lines C and B,
designated as 6, is given by

1 “(1 = Qp)g{dk
1+ p(1 — p)(gldi)?

6 = tan™

as illustrated in Fig. 4.14b. Evidently by adjusting p in the range 0 to % the
slope of @ can be varied in the range —g7 dy to 0. By fixing p at some value in
the permissible range, two values of « are defined by the intercepts of the lines
in Egs. (4.53) and (4.54) and the curve for f(x41), say, a; and oz, as depicted
in Fig. 4.14b.

Let o be an estimate of the value of a that minimizes f(x; + ady). If
f(x4.41) for a« = ag is equal to or less than the corresponding value of f (Xks1)
given by Eq. (4.53), and is equal to or greater than the corresponding value of
f(xg41) given by Eq. (4.54), that is, if

f(Xpp1) < F(xx) + pgidico (4.55)

and
F(xkg1) = f(xx) + (1 — p)ghdiag (4.56)

then oy may be deemed to be an acceptable estimate of a” in that it will
yield a sufficient reduction in f(x). Under these circumstances, we have
a1 < ag < g, as depicted in Fig. 4.14b, i.e., a1 and o constitute a bracket of
the estimated minimizer . Egs. (4.55) and (4.56), which are often referred to
as the Goldstein conditions, form the basis of a class of inexact line searches. In
these methods, an estimate ay is generated by some means, based on available
information, and the conditions in Egs. (4.55) and (4.56) are checked. If both
conditions are satisfied, then the reduction in f(xX1) is deemed to be accept-
able, and the procedure is terminated. On the other hand, if either Eq. (4.55) or
Eq. (4.56) is violated, the reduction in f(xy.1) is deemed to be insufficient and
an improved estimate of o, say, d. can be obtained. If Eq. (4.55) is violated,
then oy > a9 as depicted in Fig. 4.15a and since o, < o < ao, the new
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Figure 4.14. (a) The Goldstein tests. (b) Goldstein tests satisfied.

estimate (v can be determined by using interpolation. On the other hand, if
Eq. (4.56) is violated, ag < vy as depicted in Fig. 4.15b, and since ag is likely
to be in the range ap, < ap < a, &g canbe determined by using extrapolation.

If the value of f(xj + ady) and its derivative with respect to o are known for
o = ar and a = ayp, thenforap > a2 a good estimate for &g can be deduced
by using the interpolation formula

(a0 — ar)?f1, 4.57)

G0 =L+ S (a0 — an) )

and for

fr
fo




#7

One-Dimensional Optimization 109

| f(xk) !

f(Xgap)

oy

(a)

fixg)

/A(xﬂwl'

Qp O o o' o o

(b)

Figure 4.15. Goldstein tests violated: (a) with ap > az, (b) with ag < a;.

hand, if and for ap < « the extrapolation formula
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can be used, where

fr = f(xp+arde), fr=F(xx+oardy) =g(xx+ ardg)’dy

4.57) '
L fo = flx+aodi), fi=f(xi+ aodi) = g(xk + aodi)Tdi
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(see Sec. 4.5).

Repeated application of the above procedure will eventually yield a value of
(ko such that vy < ap < g and the inexact line search is terminated.

A useful theorem relating to the application of the Goldstein tests in an
inexact line search is as follows:

Theorem 4.1 Convergence of inexact line search If
(a) f(xy) has a lower bound,
(b) g is uniformly continuous on set {x: f(x) < f(xo)}
(c) directions dy, are not orthogonal to —g for all k,

then a descent algorithm using an inexact line search based on Egs. (4.55) and
(4.56) will converge to a stationary point as k — oo.

The proof of this theorem is given by Fletcher [9]. The theorem does not
guarantee that a descent algorithm will converge to a minimizer since a saddle
point is also a stationary point. Nevertheless, the theorem is of importance since
it demonstrates that inaccuracies due to the inexactness of the line search are
not detrimental to convergence.

Conditions (a) and (b) of Theorem 4.1 are normally satisfied but condition
(¢) may be violated. Nevertheless, the problem can be avoided in practice by
changing direction dj. For example, if @ is the angle between dy and —gk
and
1 —8Brdk =

lgell ldell 2

then dj. can be modified slightly to ensure that

f = cos™

Ok = 5 ~H
where p > 0.

The Goldstein conditions sometimes lead to the situation illustrated in Fig.
4.16. where o* is notin the range [, az|. Evidently,in such acase a value apin
the interval [a*, c1] will not terminate the line search even though the reduction
in f(x) would be larger than that for any ay in the interval (a1, ao]. Although
the problem is not serious, since convergence is assured by Theorem 4.1, the
amount of computation may be increased. The problem can be eliminated by
replacing the second Goldstein condition, namely, Eq. (4.56), by the condition

gt dy, > ogj dk (4.59)

where 0 < o < 1 and ¢ > p. This modification to the second Goldstein
condition was proposed by Fletcher [10]. It is illustrated in Fig. 4.17. The
scalar g} dj, is the derivative of f(xx + ady) at @ = 0, and since 0 < o < 1,
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Figure 4.16.  Goldstein tests violated with o™ < a.

agzdk is the derivative of f(xy + ady) at some value of a, say, «, such that
o) < o, Now if the condition in Eq. (4.59) is satisfied at some point

Xp+1 = Xp + apdy
then the slope of f(x + ady) at @ = ay is less negative (more positive) than
the slope at @ = a; and, consequently, we conclude that a; < ag. Now if

Eq. (4.55) is also satisfied, then we must have oy < (a” or ag) < ag, as
depicted in Fig. 4.17.
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Figure 4.17.  Fletcher's modification of the Goldstein tests.
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The precision of a line search based on Egs. (4.55) and (4.59) canbe increased
by reducing the value of o. While o = 0.9 results in a somewhat imprecise line
search. the value o = 0.1 results in a fairly precise line search. Note, however,
that a more precise line search could slow down the convergence.

A disadvantage of the condition in Eq. (4.59) is that it does not lead to an exact
line search as ¢ — 0. An alternative condition that eliminates this problem is

obtained by modifying the condition in Eq. (4.59) as
|g£+1dk| < —ngdk

In order to demonstrate that an exact line search can be achieved with the
above condition, let us assume that g?;dk < 0. If g'{ de <0, the line search
will not terminate until

—|gt, di| > ogldy

and if g7, ,dx > 0, the line search will not terminate until
gl di| < —ogt di (4.60)

Now if og} dg. gjdk. and —ogl'dy, are the derivatives of f(xy + ady) at
points & = @, @ = Qp, and o = a, respectively, we have oy < «o < g
as depicted in Fig. 4.18. In effect, Eg. (4.60) overrides both of the Goldstein
conditions in Egs. (4.55) and (4.56). Since interval [a, avy] can be reduced
as much as desired by reducing o, it follows that o* can be determined as
accurately as desired, and as 0 — (), the line search becomes exact. In such a
case. the amount of computation would be comparable to that required by any
other exact line search and the computational advantage of using an inexact line
search would be lost.

An inexact line search based on Eqgs. (4.55) and (4.59) due to Fletcher [10]

is as follows:

Algorithm 4.6 Inexact line search

Step 1

Input xj, dj, and compute gg.

Initialize algorithm parameters p, o, T, and .
Set oy, = 0 and apy = 1099,

Step 2

Compute fr, = f(xx + ard).

Compute f; = g(xx + ardi)Tdg.

Step 3

Estimate o.
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Figure 4.18. Conversion of inexact line search into an exact line search.

Step 4
Compute Jfo= fixi+ Oz(]dk).
‘ Step 5 (Interpolation)

If fo > fr + plao — ar)f}, then do:
a. If ag < aq, then set oy = ay.
b. Compute & using Eq. (4.57).
c. fag < ap + T(CBU — aL) then set ¢&vg = ap, + T(ay — (]:L).
d. If &g > ay — 7(ay — ap) then set &y = ay — 7(av — ag).
e. Set oy = @ and go to Step 4.

Step 6
l Compute f() = g(xx + a()dk)rdk.
Step 7 (Extrapolation)

If f, < o f}. then do:
a. Compute Aag = (ag — ar) fo/(f1, — fo) (see Eq. (4.58)).
b. If Aag < T(QU — avp ), then set Aag = 1(ag — ar,).
c. If Aag > x(ap — ar), then set Aag = x (a0 — ar).
d. Compute &y = ap + Aag.
e. Set ay, = ag, ag = &, fr = fo, f; = fo, and go to Step 4.
Step 8
Output g and fy = f(xg + apdy), and stop.

The precision to which the minimizer is determined depends on the values of
pand o. Small values like p = o = 0.1 will yield arelatively precise line search
whereas values like p = 0.3 and o = 0.9 will yield a somewhat imprecise line
search. The values p = 0.1 and o = 0.7 give good results.
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An estimate of ag in Step 3 can be determined by assuming that f(x) is
a convex quadratic function and using ap = llgoll?/ (gl Hogo) which is the
minimum point for a convex quadratic function.

In Step 5, dv is checked and if necessary it is adjusted through a series of
interpolations to ensure that oy < &g < ay. A suitable value for 7 is 0.1.
This assures that ¢ is no closer to ey, or oy than 10 percent of the permissible
range. A similar check is applied in the case of extrapolation, as can be seen in
Step 7. The value for x suggested by Fletcher is 9.

The algorithm maintains a running bracket (or range of uncertainty) [, au]
that contains the minimizer which is initially set to [0, 10%9) in Step 1. This is
gradually reduced by reducing ay in Step 5a and increasing v, in Step 7e.

In Step 7e, known data that can be used in the next iteration are saved, i.e.,
oo, fo, and f} become ay, fr,and f7. respectively. This keeps the amount of
computation to a minimum.

Note that the Goldstein condition in Eq. (4.55) is modified as in Step 5
to take into account the fact that oy, assumes a value greater than zero when
extrapolation is applied at least once.
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Problems

4.1 (a) Assuming that the ratio of two consecutive Fibonacci numbers,
Fj_,/ Fy, converges to a finite limit cv, use Eq. (4.4) to show that

I Fr1
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=a=——=0.6180
k—oo Fg \/g-}—l

(b) Use MATLAB to verify the value of « in part (a).
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