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1. I

In a 1983 paper Gromov defined the distortion of a curve as follows:

Definition 1.1 ( [?gromov]). Let γ : [a, b] → R3 be a continuous curve. Then the
distortion of γ is

δ(γ) := sup
s,t

d(γ(s), γ(t); γ)
|γ(s) − γ(t)|

where d(γ(s), γ(t); γ) is the shortest distance from γ(s) to γ(t) along γ, and |·| is the Eu-
clidean norm on R3.

Following Mullikin [?Mul], we will denote the quotient inside the supremum above by
dqγ(s, t) and call this quantity the distortion quotient of (s, t). Furthermore, we define the
distortion of a knot:
Definition 1.2. [?Mul] For any knot class [γ], define the distortion of the knot class by

δ([γ]) := inf
γ∈[γ]
δ(γ).

Gromov also asked whether any knot class has distortion less than 100 [?gromov]. More
generally, the question that geometric knot theorists want to answer is does there exist an
upper bound, C, such that for all knot classes [K], δ([K]) < C? This question has remained
unanswered, but there has been work done to try to find lower bounds on the distortion
of knots. It is known that the distortion of the unknot is π/2 [?KS]. Work by Denne and
Sullivan shows that the distortion of any nontrivial knot is greater than or equal to 5π/3, and
this is the best current lower bound for a nontrivial knot [?DS]. Recently, Chad Mullikin
proved that for any knot type, if length minimizing curves in a certain subset of the knot
class exist, then these curves have chords with high distortion [?Mul]. Unfortunately, there
is no proof for the existence of these minimizing curves. To help strengthen his theorem,
Mulikin conjectures that for any curve in a knot class there exists a chord with distinct
endpoints such that the distortion quotient of these points is greater than or equal to the
distortion of the knot class. The rest of this paper is devoted to answering a variation of
this conjecture for polygonal knots.

The distortion of a polygonal knot is just the same as the distortion of any other type of
knot, but we need to make a distinction between different pairs of points on the polygon.
We will call pairs of points on adjacent edges trivial and pairs of points on nonadjacent
edges nontrivial.

We need to define the turning angle at a vertex vn of a polygon as the angle α ∈ [0, π]
between the oriented tangent vectors at vn to the two edges vn−1vn and vnvn+1 [?Sul].
Furthermore, we’ll call the sum of all the turning angles of a polygon the polygon’s total
curvature. And if the total curvature of a polygon, P, is finite then we say that the P is in the
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class of curves of finite total curvature(abbreviated by FTC) [?Sul]. It must also be noted
that the distortion at a vertex v with turning angle αv has distortion

δ(v) = sec
αv

2
[?Sul].

We require a special class of polygons for the theorem:

Definition 1.3. For a given knot class [γ], let Φ[γ] be the set of all polygons, P : [a, b] →
R3, satisfying the following:

(1) P is also an element of [γ] and of FTC.
(2) Every pair of adjacent edges of P has combined length strictly less than LP/2,

where LP is the length of P.

The main theorem will say that any polgyon P ∈ Φ[γ] will have a nontrivial pair of
points with distortion greater than or equal to δ([γ]).

2. P K

Three lemmas are needed before the proof of the main theorem. The first lemma shows
that for P ∈ Φ[γ], the arclength, d(·, ·; P), of two points on adjacent edges is always mea-
sured through the common vertex. This lemma is essential in the proof of the theorem.
The second lemma shows that a polygonal knot of finite total curvature must have at most
a finite number of vertices with distortion greater than or equal to the distortion of the knot
class. Finally, the third lemma demonstrates that polygonal knots with at least one vertex
with distortion strictly greater than the distortion of the knot class, must have a nontrivial
pair with high distortion.

Lemma 2.1. Let P ∈ Φ[γ]. Then for all pairs (s, t) ∈ [a, b] × [a, b], where P(s) and P(t)
are on adjacent edges, e1 and e2, d(P(s), P(t); P) is the distance from P(s) to P(t) through
the common vertex of e1 and e2.

Proof. Take any pair of points (s, t) as described in the statement of the lemma, and denote
by |e1| and |e2|, the lengths of edges e1 and e2, respectively. Take the distance from P(s) to
P(t) through the common vertex and denote this distance by ∆. The greatest possible value
of ∆ for a given (s, t) is just |e1|+ |e2|. Furthermore, since P ∈ Φ[γ] we have |e1|+ |e2| < L/2.
So, ∆ < LP/2. Now, d(P(s), P(t); P) is equal to min(∆, LP − ∆), and since ∆ < LP/2 we
have LP − ∆ > LP/2. Therefore, d(P(s), P(t); P) = ∆. �

Lemma 2.2. If P ∈ FTC and P is a polygon in the knot class [γ], then P can have only
finitely many vertices whose distortion is greater than or equal to δ([γ]).

Proof. Let v be a vertex with turning angle αv. The distortion at v is equal to sec αv
2 . Sup-

pose for contradiction that there are infinitely many vertices of P with distortion greater
than or equal to δ([γ]). Since the secant function is increasing on [0, π2 ), at every vertex
whose distortion is greater than or equal to δ([γ]) its turning angle must be greater than or
equal to 2 sec−1 δ([γ]). At these vertices the turning angles are bounded away from zero,
which means the sum of the turning angles is infinite. So, P has infinite curvature, con-
tradicting the hypothesis that P ∈ FTC. Therefore, P can have only finitely many vertices
with distortion greater than or equal to δ([γ]). �

Lemma 2.3. Let P ∈ Φ[γ]. If P has a vertex with distortion strictly greater than δ([γ]),
then there exists points (s, t) ∈ [a, b] × [a, b] such that P(s) and P(t) are nontrivial and
dqP(s, t) ≥ δ([γ]).
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Proof. Take the maximum, over all pairs of adjacent edges, of the sum of the two edge
lengths. Denote this length by M. Let l = LP/2−M > 0. l is strictly greater than zero since
P ∈ Φ[γ] so no two adjacent edges has combined length greater than or equal to LP/2. Take
a vertex, v, of P that has distortion δ(v), where δ(v) > δ([γ]). Now, let ∆ = δ(v) − δ([γ]).
Denote the edges incident at v by e1 and e2, and without loss of generality let |e1| ≤ |e2|.
Take the other endpoint of e1 and denote it by P(s). Furthermore, find the point on e2
that is at a distance |e1| away from v and denote it by P(t). The key to this proof is the
application of Lemma ??. It tells us that d(P(s), P(t); P) is taken through the vertex v and
not around the polygon in the other direction. Therefore, dqP(s, t) = δ(v) and by continuity
of distortion we can move off of P(s) by a small amount and not change the distortion by
more than ∆, as the rest of the proof shows.

Let a = d(P(s), P(t); P), and b = |P(s) − P(t)|. We claim that if one takes a point P(s′)
off of e1 but at a distance from P(s) less than or equal to

∆ · b2

a − (d + 1)b
, (2.1)

and less than or equal to l, then dqP(s′, t) ≥ δ([γ]). To see this, first note that if we move
ε away from P(s) in arc length, then the distortion quotient is smallest when the Euclidean
distance from P(s′) to P(t) also increases by ε. So without loss of generality assume
d(P(s′), P(t); P) = a + ε and |P(s′) − P(t)| = b + ε, where ε is less than or equal to (2.1)
and less than or equal to l. Since we move less than l from P(s), we still calculate distance
along P from P(s′) to P(t) through v. Now take the difference of the distortion quotients:

dqP(s, t) − dqP(s′, t) =
a
b
−

a + ε
b + ε

=
ε(a − b)
b(b + ε)

and,
(b + ε)
ε
·

b
(a − b)

=
b2

ε(a − b)
+

b
a − b

≥
a − (d + 1)b

db2 ·
b2

a − b
+

b
a − b

=
a − (∆ + 1)b

d(a − b)
+

bd
d(a − b)

=
1
∆

Therefore, dqP(s, t)−dqP(s′, t) ≤ ∆, which implies δ(v)−dqP(s′, t) ≤ δ(v)−δ([γ]). Finally,
we get dqP(s′, t) ≥ δ([γ]), and P(s′) and P(t) are points on nonadjacent edges. �

Theorem 2.1. A polygon Q ∈ Φ[γ], has a nontrivial pair of points, Q(s) and Q(t), such that
dqQ(s, t) ≥ δ([γ]).

Proof. Consider the set Γ ⊂ Φ[γ] where every P ∈ Γ satisfies the condition that ∀s, t ∈
[a, b], dqP(s, t) < δ([γ]) when P(s) and P(t) are on nonadjacent edges. From Lemma 2.3
we see that the distortion at every vertex of P ∈ Γ must be less than or equal to δ([γ]).
Furthermore, Lemma 2.2 implies that only finitely many of these vertices can have distor-
tion equal to δ([γ]). Also, for any P ∈ Γ, P must have at least one vertex with distortion
equal to δ([γ]). For if P did not, then for every s, t ∈ [a, b], dqP(s, t) < δ([γ]). This implies
δ(P) < δ([γ]), which means P < [γ]. But P ∈ Φ[γ], so we’ve reached a contradiction.
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F 2.1. The polygon cutting process

To prove this theorem we want to show that Γ is empty, and we’ll accomplish this by
contradiction. So suppose that Γ is not empty. Then there must exist Q ∈ Γ with the prop-
erty that Q has the least number of vertices with distortion equal to δ([γ]). Take a vertex
v of Q that has distortion δ([γ]). Such a v must exist as we’ve shown. As noted in the
introduction, the turning angle at v, αv, satisfies the equation:

sec
αv

2
= δ([γ]).

We now wish to remove a length of ε/2 from both sides of v and add a new edge, eε(see
figure ??). But this process might cause drastic changes in our polygon. First, we must take
care that our resulting polygon, which we will denote by Qε , stays in Φ[γ]. We want Qε to
be in [γ]. To ensure this we need to make ε small enough so that no other edge of Qε passed
through the removed ”triangle”. If ε could not be made small enough to ensure no other
edges passed between eε and v, there would be points on the polygon arbitrarily close to v
in space but bounded away from zero in arc length. This would result in infinite distortion,
which is a clear contradiction of the fact that the distortion of Q is δ([γ]). Therefore, we
can definitely choose an ε small enough so that Qε ∈ [γ].

Two new vertices, vε,1 and vε,2, are created in the construction of Qε , but their turning
angles are exactly half of the turning angle of v. Then the total curvature of Qε is equal to
the total curvature of Q, which gives Qε ∈ FTC. Therefore, we can choose ε small enough
so that Qε satisfies property (1) in the definition of Φ[γ].

It remains to show that ε can be choosen to assure Qε satisfies property (2) in the defi-
nition of Φ[γ]. An easy calculation shows the length of eε is ε/δ([γ]), so the total length of
Qε , LQε , is

LQ − (ε − ε/δ([γ])).
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Let M be the maximum, over all pairs of adjacent edges in P, of the sum of the two edge
lengths. We need the change in arc length to be less than LQ

2 −M because this would ensure
that no pair of adjacent edges in Qε has length more than LQε/2. Choosing an ε > 0 such
that

ε <
δ([γ])
δ([γ]) − 1

· (
LQ

2
− M) (2.2)

results in the change in arc length to be small enough to preserve property (2) in the defi-
nition of Φ[γ]. Therefore, choosing ε satisfying ?? and small enough so that no edge runs
between eε and v, results in Qε ∈ Φ[γ].

Choose an ε so that Qε ∈ Φ[γ]. Then cut off ε/2 from both sides of v and construct the
new edge, eε . Consider the vertices, vε,1 and vε,2, in Qε added in the construction above.
The turning angles at these vertices are strictly less than the turning angle at v in Q, which
implies that the distortion values at vε,1 and vε,2 are both strictly less than δ([γ]). Therefore,
Qε , which is still in Φ[γ], has one fewer vertex than Q that realizes δ([γ]). So, if Qε ∈ Γ
we have a contradiction since Q was assumed to have the fewest vertices that realize the
distortion.

If Qε < Γ, then there exists s, t ∈ [a, b] such that Qε(s),Qε(t) are nontrivial and
dqQε (s, t) ≥ δ([γ]). We now want to show that exactly one of the points, Qε(s) or Qε(t),
must be on eε . Denote the two edges that were incident at v by e1 and e2, and the mod-
ified edges by e′1 and e′2. So e′j ⊂ e j for j = 1, 2. Suppose neither Qε(s) nor Qε(t) are
in eε . Clearly, d(Qε(s),Qε(t); Qε) ≤ d(Q(s),Q(t); Q), so dqQε (s, t) ≤ dqQ(s, t) since the
distance in R3 from P(s) to P(t) does not change. It is possible that dqQ(s, t) = δ([γ])
if Qε(s) is on either e′1 or e′2, and Qε(t) is on the other. But in this case we would have
d(Qε(s),Qε(t); Qε) < d(Q(s),Q(t); Q) because Q ∈ Φ[γ] which means the arc length is mea-
sured through v. This leads to a contradiction: δ([γ]) ≤ dqQε (s, t) < dqQ(s, t) = δ([γ]). So,
at least one of the points must be on eε . They cannot both be on it otherwise dqQε (s, t) = 1,
but for all closed curves the distortion is greater than or equal to π/2 [?KS]. Therefore, ex-
actly one of the points,Qε(s) and Qε(t), is in eε . Without loss of generality, let Qε(s) ∈ eε .

Consider the sequence {εk}∞k=1, k ∈ N, such that ε1 is the ε choosen above and 0 < εi+1 <
εi. For every εi, Qεi ∈ Φ[γ] since εi ≤ ε, and Qεi < Γ for all i because otherwise there
would be a Qε j ∈ Γ with one fewer vertex than Q with distortion δ([γ]). As shown above,
for each Qεi , there are points (si, ti) ∈ [a, b] × [a, b] such that Qεi (si) ∈ eεi , Qεi (ti) is on
an edge nonadjacent to eεi (so Qεi (ti) ∈ Q), and dqQεi (si, ti) ≥ δ([γ]). By compactness of
[a, b] × [a, b] there must be a subsequence of {(si, ti)}∞i=1 converging to (s, t). Q(s) must be
the vertex v of Q removed in the construction of the new polygons, and since Qεi (ti) is on
an edge nonadjacent to eεi , Q(t) is bounded away from Q(s).

Let {si, ti)}∞i=1 be the convergent subsequence converging to (s, t) as above. To ease the
forthcoming computations denote the polygon Qε j by Q j. Since dqQ j (s j, t j) ≥ δ([γ]) for
all j, we want to show that for any ε > 0 there exists an N ∈ N such that for every j ≥ N,∣∣∣dqQ(s, t) − dqQ j (s j, t j)

∣∣∣ ≤ ε. As the following calculations show, we want to bound three
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terms:∣∣∣dqQ(s, t) − dqQ j (s j, t j)
∣∣∣ = ∣∣∣dqQ(s, t) − dqQ(s, t j) − dqQ j (s j, t j) + dqQ(s, t j)

∣∣∣
≤
∣∣∣dqQ(s, t) − dqQ(s, t j)

∣∣∣ + ∣∣∣dqQ j (s j, t j) − dqQ(s, t j)
∣∣∣

≤
∣∣∣dqQ(s, t) − dqQ(s, t j)

∣∣∣ + ∣∣∣∣∣∣∣dqQ j (s j, t j) − dqQ j (s j, t j)

∣∣∣Q j(s j) − Q j(t j)
∣∣∣∣∣∣Q(s) − Q j(t j)
∣∣∣
∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣dqQ(s, t j) − dqQ j (s j, t j)

∣∣∣Q j(s j) − Q j(t j)
∣∣∣∣∣∣Q(s) − Q j(t j)
∣∣∣
∣∣∣∣∣∣∣ . (2.3)

Fix an ε > 0. By continuity of dqQ and by convergence of t j → t, there exists an N1 ∈ N

such that for every j ≥ N1, we have
∣∣∣dqQ(s, t) − dqQ(s, t j)

∣∣∣ ≤ ε2 . Furthermore, simplifying
the third term in ?? above yields:∣∣∣∣∣∣∣dqQ(s, t j) − dqQ j (s j, t j)

∣∣∣Q j(s j) − Q j(t j)
∣∣∣∣∣∣Q(s) − Q j(t j)
∣∣∣
∣∣∣∣∣∣∣ =

∣∣∣d(s, t j; Q) − d(s j, t j; Q j)
∣∣∣∣∣∣Q(s) − Q j(t j)

∣∣∣ . (2.4)

The above equality holds since Q(t j) = Q j(t j) for all j.
∣∣∣Q(s) − Q j(t j)

∣∣∣ is bounded away
from 0, which implies there exists a constant C1 > 0 such that for all j, 1

|Q(s)−Q j(t j)|
≤ C1.

Furthermore,
∣∣∣d(s, t j; Q) − d(s j, t j; Q j)

∣∣∣ ≤ ∣∣∣∣ ε j

2 −
ε j

δ([γ])

∣∣∣∣ = ε j ·

∣∣∣∣ δ([γ])−2
2δ([γ])

∣∣∣∣, and since ε j → 0 as

j → ∞, there exists an N2 ∈ N such that ε j ≤
ε

4C1
·

∣∣∣∣ 2δ([γ])
δ([γ])−2

∣∣∣∣. So given j ≥ N2, equation ??
yields, ∣∣∣∣∣∣∣dqQ(s, t j) − dqQ j (s j, t j)

∣∣∣Q j(s j) − Q j(t j)
∣∣∣∣∣∣Q(s) − Q j(t j)
∣∣∣
∣∣∣∣∣∣∣ ≤ C1 · ε j ·

∣∣∣∣∣δ([γ]) − 2
2δ([γ])

∣∣∣∣∣
≤
ε

4
.

Now we are left with one term in ?? to bound. To begin we see that there exists a constant
C2 > 0 such that for all j, dqQ j (s j, t j) ≤ C2. Q j(s j) converges to Q(s), which means there
exists an N3 ∈ N such that for all j ≥ N3,

∣∣∣Q(s) − Q j(s j)
∣∣∣ ≤ ε

4C1C2
. From the triangle

inequality we get,∣∣∣Q(s) − Q j(s j)
∣∣∣ ≥ ∣∣∣∣∣∣Q(s) − Q j(t j)

∣∣∣ − ∣∣∣Q j(s j) − Q j(t j)
∣∣∣∣∣∣

So,

−
ε

4C1C2
≤
∣∣∣Q(s) − Q j(t j)

∣∣∣ − ∣∣∣Q j(s j) − Q j(t j)
∣∣∣ ≤ ε

4C1C2
.

A further simplification yields,

1 −
ε

4C1C2
·

1∣∣∣Q(s) − Q j(t j)
∣∣∣ ≤
∣∣∣Q j(s j) − Q j(t j)

∣∣∣∣∣∣Q(s) − Q j(t j)
∣∣∣ ≤ 1 +

ε

4C1C2
·

1∣∣∣Q(s) − Q j(t j)
∣∣∣

As we’ve seen, 1
|Q(s)−Q j(t j)|

≤ C1 so

1 −
ε

4C2
≤

∣∣∣Q j(s j) − Q j(t j)
∣∣∣∣∣∣Q(s) − Q j(t j)
∣∣∣ ≤ 1 +

ε

4C2
. (2.5)
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F 2.2

Multiplying ?? through by dqQ j (s j, t j) and simplifying gives,∣∣∣∣∣∣∣dqQ j (s j, t j) ·

∣∣∣Q j(s j) − Q j(t j)
∣∣∣∣∣∣Q(s) − Q j(t j)
∣∣∣ − dqQ j (s j, t j)

∣∣∣∣∣∣∣ ≤ ε

4C2
dqQ j (s j, t j)

≤
ε

4C2
·C2

=
ε

4
.

Therefore, from ?? and the computed bounds, we conclude that given an ε > 0 there
exists an N = max(N1,N2,N3) ∈ N such that for all j ≥ N,∣∣∣dqQ(s, t) − dqQ j (s j, t j)

∣∣∣ ≤ ε
2
+
ε

4
+
ε

4
= ε.

Since dqQ j (s j, t j) ≥ δ([γ]) for all j, we see that dqQ(s, t) ≥ δ([γ]). But since Q ∈ Γ, dqQ(s, t)
must equal δ([γ]) and Q(s) and Q(t) must be on adjacent edges.

So, if v′ is the vertex between Q(s) and Q(t), the distances along Q from v′ to Q(s) and
from v′ to Q(t) must be equal. The turning angle at v′ is the same as at v = Q(s). Now move
a small distance along Q from Q(t) towards v′ to a point Q(w1). Move the same distance
from Q(s) away from v′ to a point Q(w2). dqQ(w1,w2) is minimized when e1, e2,and e3 are
in the same plane since this configuration maximizes |Q(w1) − Q(w2)|. See figure ??. But
then e1 and e2 are parallel, so dqQ(w1,w2) = δ([γ]). This is a contradiction since e1 and e3
are nonadjacent, Q(w1) is not v′, which means Q(w1) and Q(w2) are nontrivial .

Therefore, Γ must be empty, which means there exists no polygon of a given knot with
only nontrivial pairs of points with distortion greater than or equal to the distortion of the
knot class.

�
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