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Chapter 5

Numerical Integration

Commit your blunders on a small scale and
make your profits on a large scale.
—Leo Hendrik Baekeland

5.1 Interpolatory Quadrature Rules

5.1.1 Introduction

In this chapter we study the approximate calculation of a definite integral

I [f ] =
∫ b

a

f (x) dx, (5.1.1)

where f (x) is a given function and [a, b] a finite interval. This problem is often called
numerical quadrature, since it relates to the ancient problem of the quadrature of the
circle, i.e., constructing a square with equal area to that of a circle. The computation of
(5.1.1) is equivalent to solving the initial value problem

y ′(x) = f (x), y(a) = 0, x ∈ [a, b] (5.1.2)

for y(b) = I [f ]; cf. Sec. 1.5.
As is well known, even many relatively simple integrals cannot be expressed in finite

terms of elementary functions, and thus must be evaluated by numerical methods. (For a
table of integrals that have closed analytical solutions, see [168].) Even when a closed form
analytical solution exists it may be preferable to use a numerical quadrature formula.

Since I [f ] is a linear functional, numerical integration is a special case of the problem
of approximating a linear functional studied in Sec. 3.3.4. The quadrature rules considered
will be of the form

I [f ] ≈
n∑

i=1

wif (xi), (5.1.3)
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522 Chapter 5. Numerical Integration

where x1 < x2 < · · · < xn are distinct nodes and w1, w2, . . . , wn the corresponding
weights. Often (but not always) all nodes lie in [a, b].

The weights wi are usually determined so that the formula (5.1.3) is exact for poly-
nomials of as high degree as possible. The accuracy therefore depends on how well the
integrand f (x) can be approximated by a polynomial in [a, b]. If the integrand has a sin-
gularity, for example, it becomes infinite at some point in or near the interval of integration,
some modification is necessary. Another complication arises when the interval of integra-
tion is infinite. In both cases it may be advantageous to consider a weighted quadrature
rule: ∫ b

a

f (x)w(x) dx ≈
n∑

i=1

wif (xi). (5.1.4)

Here w(x) ≥ 0 is a weight function (or density function) that incorporates the singularity
so that f (x) can be well approximated by a polynomial. The limits (a, b) of integration are
now allowed to be infinite.

To ensure that the integral (5.1.4) is well defined when f (x) is a polynomial, we
assume in the following that the integrals

µk =
∫ b

a

xkw(x) dx, k = 1, 2, . . . , (5.1.5)

are defined for all k ≥ 0, andµ0 > 0. The quantityµk is called the kth moment with respect
to the weight function w(x). Note that for the formula (5.1.4) to be exact for f (x) = 1 it
must hold that

µ0 =
∫ b

a

1 · w(x) dx =
n∑

i=1

wi. (5.1.6)

In the special case that w(x) = 1, we have µ0 = b − a.

Definition 5.1.1.
A quadrature rule (5.1.3) has order of accuracy (or degree of exactness) equal to d

if it is exact for all polynomials of degree ≤ d, i.e., for all p ∈ Pd+1.

In a weighted interpolatory quadrature formula the integral is approximated by∫ b

a

p(x)w(x) dx,

where p(x) is the unique polynomial of degree n−1 interpolating f (x) at the distinct points
x1, x2, . . . , xn. By Lagrange’s interpolation formula (Theorem 4.1.1)

p(x) =
n∑

i=1

f (xi)Wi(x), Wi(x) =
n∏

j=1
j �=i

(x − xj )

(xi − xj )
,

whereWi(x) are the elementary Lagrange polynomials associated with the nodesx1, x2, . . . , xn.
It follows that for an interpolatory quadrature formula the weights are given by

wi =
∫ b

a

Wi(x)w(x) dx. (5.1.7)
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5.1. Interpolatory Quadrature Rules 523

In practice, the coefficients are often more easily computed using the method of undeter-
mined coefficients rather than by integrating Wi(x).

An expression for the truncation error is obtained by integrating the remainder (see
Theorems 4.2.3 and 4.2.4):

Rn(f ) =
∫ b

a

[x1, . . . , xn, x]f
n∏

i=1

(x − xi)w(x) dx

= 1

n!
∫ b

a

f (n)(ξx)

n∏
i=1

(x − xi)w(x) dx, ξx ∈ [a, b], (5.1.8)

where the second expression holds if f (n) is continuous in [a, b].

Theorem 5.1.2.
For any given set of nodes x1, x2, . . . , xn an interpolatory quadrature formula with

weights given by (5.1.7) has order of exactness equal to at least n − 1. Conversely, if the
formula has degree of exactness n− 1, then the formula must be interpolatory.

Proof. For any f ∈ Pn we have p(x) = f (x), and hence (5.1.7) has degree of exactness
at least equal to n − 1. On the other hand, if the degree of exactness of (5.1.7) is n − 1,
then putting f = Wi(x) shows that the weights wi satisfy (5.1.7); that is, the formula is
interpolatory.

In general the function values f (xi) cannot be evaluated exactly. Assume that the
error in f (xi) is ei , where |ei | ≤ ε, i = 1 : n. Then, if wi ≥ 0, the related error in the
quadrature formula satisfies ∣∣∣ n∑

i=1

wiei

∣∣∣ ≤ ε

n∑
i=1

|wi | ≤ εµ0. (5.1.9)

The last upper bound holds only if all weights in the quadrature rules are positive.
So far we have assumed that all the nodes xi of the quadrature formula are fixed.

A natural question is whether we can do better by a judicious choice of the nodes. This
question is answered positively in the following theorem. Indeed, by a careful choice of
nodes the order of accuracy of the quadrature rule can be substantially improved.

Theorem 5.1.3.
Let k be an integer such that 0 ≤ k ≤ n. Consider the integral

I [f ] =
∫ b

a

f (x)w(x) dx,

and an interpolatory quadrature rule

In(f ) =
n∑

i=1

wif (xi),
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using n nodes. Let

γ (x) =
n∏

i=1

(x − xi) (5.1.10)

be the corresponding node polynomial. Then the quadrature rule I [f ] ≈ In(f ) has degree
of exactness equal to d = n + k − 1 if and only if, for all polynomials p ∈ Pk , the node
polynomial satisfies ∫ b

a

p(x)γ (x)w(x) dx = 0. (5.1.11)

Proof. We first prove the necessity of the condition (5.1.11). For any p ∈ Pk the product
p(x)γ (x) is in Pn+k . Then since γ (xi) = 0, i = 1 : n,∫ b

a

p(x)γ (x)w(x) dx =
n∑

i=1

wif (xi)γ (xi) = 0,

and thus (5.1.11) holds.
To prove the sufficiency, let p(x) be any polynomial of degree n + k − 1. Let q(x)

and r(x) be the quotient and remainder, respectively, in the division

p(x) = q(x)γ (x)+ r(x).

Then q(x) and r(x) are polynomials of degree k − 1 and n− 1, respectively. It holds that∫ b

a

p(x)w(x) dx =
∫ b

a

q(x)γ (x)w(x) dx +
∫ b

a

r(x)w(x) dx,

where the first integral on the right-hand side is zero because of the orthogonality property
of γ (x). For the second integral we have∫ b

a

r(x)w(x) dx =
n∑

i=1

wir(xi),

since the weights were chosen such that the formula was interpolatory and therefore exact
for all polynomials of degree n− 1. Further, since

p(xi) = q(xi)γ (xi)+ r(xi) = r(xi), i = 1 : n,
it follows that∫ b

a

p(x)w(x) dx =
∫ b

a

r(x)w(x) dx =
n∑

i=1

wir(xi) =
n∑

i=1

wip(xi),

which shows that the quadrature rule is exact for p(x).

How to determine quadrature rules of optimal order will be the topic of Sec. 5.3.
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5.1.2 Treating Singularities

When the integrand or some of its low-order derivative is infinite at some point in or near
the interval of integration, standard quadrature rules will not work well. It is not uncommon
that a single step taken close to such a singular point will give a larger error than all other
steps combined. In some cases a singularity can be completely missed by the quadrature
rule.

If the singular points are known, then the integral should first be broken up into several
pieces so that all the singularities are located at one (or both) ends of the interval [a, b].
Many integrals can then be treated by weighted quadrature rules, i.e., the singularity is
incorporated into the weight function. Romberg’s method can be modified to treat integrals
where the integrand has an algebraic endpoint singularity; see Sec. 5.2.2.

It is often profitable to investigate whether one can transform or modify the given
problem analytically to make it more suitable for numerical integration. Some difficulties
and possibilities in numerical integration are illustrated below in a series of simple examples.

Example 5.1.1.
In the integral

I =
∫ 1

0

1√
x
ex dx

the integrand is infinite at the origin. By the substitution x = t2 we get

I = 2
∫ 1

0
et

2
dt,

which can be treated without difficulty.
Another possibility is to use integration by parts:

I =
∫ 1

0
x−1/2ex dx = 2x1/2ex

∣∣1
0 − 2

∫ 1

0
x1/2ex dx

= 2e − 2
2

3
x3/2ex

∣∣1
0 +

4

3

∫ 1

0
x3/2ex dx = 2

3
e + 4

3

∫ 1

0
x3/2ex dx.

The last integral has a mild singularity at the origin. If one wants high accuracy, then it is
advisable to integrate by parts a few more times before the numerical treatment.

Example 5.1.2.
Sometimes a simple comparison problem can be used. In

I =
∫ 1

0.1
x−3ex dx

the integrand is infinite near the left endpoint. If we write

I =
∫ 1

0.1
x−3
(

1+ x + x2

2

)
dx +

∫ 1

0.1
x−3
(
ex − 1− x − x2

2

)
dx,
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the first integral can be computed analytically. The second integrand can be treated numeri-
cally. The integrand and its derivatives are of moderate size. Note, however, the cancellation
in the evaluation of the integrand.

For integrals over an infinite interval one can try some substitution which maps the
interval (0,∞) to (0, 1), for example, t = e−x of t = 1/(1 + x). But in such cases one
must be careful not to introduce an unpleasant singularity into the integrand instead.

Example 5.1.3.
More general integrals of the form∫ 2h

0
x−1/2f (x) dx

need a special treatment, due to the integrable singularity at x = 0. A formula which is exact
for any second-degree polynomial f (x) can be found using the method of undetermined
coefficients. We set

1√
2h

∫ 2h

0
x−1/2f (x) dx ≈ w0f (0)+ w1f (h)+ w2f (2h),

and equate the left- and right-hand sides for f (x) = 1, x, x2. This gives

w0 + w1 + w2 = 2,
1

2
w1 + w2 = 2

3
,

1

4
w1 + w2 = 2

5
.

This linear system is easily solved, giving w0 = 12/15, w1 = 16/15, w2 = 2/15.

Example 5.1.4.
Consider the integral

I =
∫ ∞

0
(1+ x2)−4/3 dx.

If one wants five decimal digits in the result, then
∫∞
R

is not negligible until R ≈ 103. But
one can expand the integrand in powers of x−1 and integrate termwise:∫ ∞

R

(1+ x2)−4/3 dx =
∫ ∞

R

x−8/3(1+ x−2)−4/3 dx

=
∫ ∞

R

(
x−8/3 − 4

3
x−14/3 + 14

9
x−20/3 − · · ·

)
= R−5/3

(3

5
− 4

11
R−2 + 14

51
R−4 − · · ·

)
.

If this expansion is used, then one need only apply numerical integration to the interval
[0, 8].

With the substitution t = 1/(1+ x) the integral becomes

I =
∫ 1

0
(t2 + (1− t)2)−4/3t2/3 dt.
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The integrand now has an infinite derivative at the origin. This can be eliminated by making
the substitution t = u3 to get

I =
∫ 1

0
(u6 + (1− u3)2)−4/33u4 du,

which can be computed with, for example, a Newton–Cotes’ method.

5.1.3 Some Classical Formulas

Interpolatory quadrature formulas, where the nodes are constrained to be equally spaced, are
called Newton–Cotes169 formulas. These are especially suited for integrating a tabulated
function, a task that was more common before the computer age. The midpoint, trapezoidal,
and Simpson’s rules, to be described here, are all special cases of (unweighted) Newton–
Cotes’ formulas.

The trapezoidal rule (cf. Figure 1.1.5) is based on linear interpolation of f (x) at
x1 = a and x2 = b; i.e., f (x) is approximated by

p(x) = f (a)+ (x − a)[a, b]f = f (a)+ (x − a)
f (b)− f (a)

b − a
.

The integral of p(x) equals the area of a trapezoid with base (b − a) times the average
height 1

2 (f (a)+ f (b)). Hence∫ b

a

f (x) dx ≈ (b − a)

2
(f (a)+ f (b)).

To increase the accuracy we subdivide the interval [a, b] and assume that fi = f (xi)

is known on a grid of equidistant points

x0 = a, xi = x0 + ih, xn = b, (5.1.12)

where h = (b − a)/n is the step length. The trapezoidal approximation for the ith subin-
terval is ∫ xi+1

xi

f (x) dx = T (h)+ Ri, T (h) = h

2
(fi + fi+1). (5.1.13)

Assuming that f ′′(x) is continuous in [a, b] and using the exact remainder in Newton’s
interpolation formula (see Theorem 4.2.1) we get

Ri =
∫ xi+1

xi

(f (x)− p2(x)) dx =
∫ xi+1

xi

(x − xi)(x − xi+1) [xi, xi+1, x]f dx. (5.1.14)

Since [xi, xi+1, x]f is a continuous function of x and (x − xi)(x − xi+1) has constant
(negative) sign for x ∈ [xi, xi+1], the mean value theorem of integral calculus gives

Ri = [xi, xi+1, ξi]f
∫ xi+1

xi

(x − xi)(x − xi+1) dx, ξi ∈ [xi, xi+1].
169Roger Cotes (1682–1716) was a highly appreciated young colleague of Isaac Newton. He was entrusted with

the preparation of the second edition of Newton’s Principia. He worked out and published the coefficients for
Newton’s formulas for numerical integration for n ≤ 11.

Copyright ©2008 by the Society for Industrial and Applied Mathematics. 
This electronic version is for personal use and may not be duplicated or distributed. 
 
From "Numerical Methods in Scientific Computing, Volume 1" by Germund Dalquist and Åke Björck. 
This book is available for purchase at www.siam.org/catalog.



dqbjvol1
2007/12/28
page 528

528 Chapter 5. Numerical Integration

Setting x = xi + ht and using the Theorem 4.2.3, we get

Ri = −1

2
f ′′(ζi)

∫ 1

0
h2t (t − 1)h dt = − 1

12
h3f ′′(ζi), ζi ∈ [xi, xi+1]. (5.1.15)

For another proof of this result using the Peano kernel see Example 3.3.16.
Summing the contributions for each subinterval [xi, xi+1], i = 0 : n, gives∫ b

a

f (x) dx = T (h)+ RT , T (h) = h

2
(f0 + fn)+ h

n−1∑
i=2

fi, (5.1.16)

which is the composite trapezoidal rule. The global truncation error is

RT = −h3

12

n−1∑
i=0

f ′′(ζi) = − 1

12
(b − a)h2f ′′(ξ), ξ ∈ [a, b]. (5.1.17)

(The last equality follows since f ′′ was assumed to be continuous on the interval [a, b].)
This shows that by choosing h small enough we can make the truncation error arbitrarily
small. In other words, we have asymptotic convergence when h→ 0.

In the midpoint rule f (x) is approximated on [xi, xi+1] by its value

fi+1/2 = f (xi+1/2), xi+1/2 = 1

2
(xi + xi+1),

at the midpoint of the interval. This leads to the approximation∫ xi+1

xi

f (x) dx = M(h)+ Ri, M(h) = hfi+1/2. (5.1.18)

The midpoint rule approximation can be interpreted as the area of the trapezium defined by
the tangent of f at the midpoint xi+1/2.

The remainder term in Taylor’s formula gives

f (x)− (fi+1/2 + (x − xi+1/2)f
′
i+1/2) =

1

2
(x − xi+1/2)

2f ′′(ζx), ζx ∈ [xi, xi+1/2].

By symmetry the integral over [xi, xi+1] of the linear term vanishes. We can use the mean
value theorem to show that

Ri =
∫ xi+1

xi

1

2
f ′′(ζx)(x − xi+1/2)

2 dx = 1

2
f ′′(ζi)

∫ 1/2

−1/2
h3t2 dt = h3

24
f ′′(ζi).

Although it uses just one function value, the midpoint rule, like the trapezoidal rule, is exact
when f (x) is a linear function. Summing the contributions for each subinterval, we obtain
the composite midpoint rule:∫ b

a

f (x) dx = M(h)+ RM, M(h) = h

n−1∑
i=0

fi+1/2. (5.1.19)
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(Compare the above approximation with the Riemann sum in the definition of a definite
integral.) For the global error we have

RM = (b − a)h2

24
f ′′(ζ ), ζ ∈ [a, b]. (5.1.20)

The trapezoidal rule is called a closed rule because values of f at both endpoints are
used. It is not uncommon that f has an integrable singularity at an endpoint. In that case
an open rule, like the midpoint rule, can still be applied.

If f ′′(x) has constant sign in each subinterval, then the error in the midpoint rule
is approximately half as large as that for the trapezoidal rule and has the opposite sign.
But the trapezoidal rule is more economical to use when a sequence of approximations
for h, h/2, h/4, . . . is to be computed, since about half of the values needed for h/2 were
already computed and used for h. Indeed, it is easy to verify the following useful relation
between the trapezoidal and midpoint rules:

T

(
h

2

)
= 1

2
(T (h)+M(h)). (5.1.21)

If the magnitude of the error in the function values does not exceed 1
2U , then the

magnitude of the propagated error in the approximation for the trapezoidal and midpoint
rules is bounded by

RA = 1

2
(b − a)U, (5.1.22)

independent of h. By (5.1.9) this holds for any quadrature formula of the form (5.1.3),
provided that all weights wi are positive.

If the roundoff error is negligible and h sufficiently small, then it follows from (5.1.17)
that the error in T (h/2) is about one-quarter of that in T (h). Hence the magnitude of the
error in T (h/2) can be estimated by (1/3)|T (h/2) − T (h)|, or more conservatively by
|T (h/2)−T (h)|. (Amore systematic use of Richardson extrapolation is made in Romberg’s
method; see Sec. 5.2.2.)

Example 5.1.5.
Use (5.1.21) to compute the sine integral Si(x) = ∫ x

0
sin t
t

dt for x = 0.8. Midpoint
and trapezoidal sums (correct to eight decimals) are given below.

h M(h) T (h)

0.8 0.77883 668 0.75867 805
0.4 0.77376 698 0.76875 736
0.2 0.77251 272 0.77126 217
0.1 0.77188 744

The correct value, to ten decimals, is 0.77209 57855 (see [1, Table 5.2]). We verify that in
this example the error is approximately proportional to h2 for both M(h) and T (h), and we
estimate the error in T (0.1) to be 1

3 6.26 · 10−4 ≤ 2.1 · 10−4.
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From the error analysis above we note that the error in the midpoint rule is roughly
half the size of the error in the trapezoidal rule and of opposite sign. Hence it seems that
the linear combination

S(h) = 1

3
(T (h)+ 2M(h)) (5.1.23)

should be a better approximation. This is indeed the case and (5.1.23) is equivalent to
Simpson’s rule.170

Another way to derive Simpson’s rule is to approximate f (x) by a piecewise polyno-
mial of third degree. It is convenient to shift the origin to the midpoint of the interval and
consider the integral over the interval [xi − h, xi + h]. From Taylor’s formula we have

f (x) = fi + (x − xi)f
′
i +

(x − xi)
2

2
f ′′i +

(x − xi)
3

3! f ′′′i +O(h4),

where the remainder is zero for all polynomials of degree three or less. Integrating term by
term, the integrals of the second and fourth term vanish by symmetry, giving∫ xi+h

xi−h
f (x) dx = 2hfi + 0+ 1

3
h3f ′′i + 0+O(h5).

Using the difference approximation h2f ′′i = (fi−1 − 2fi + fi+1)+O(h4) (see (4.7.5)) we
obtain ∫ xi+h

xi−h
f (x) dx = 2hfi + 1

3
h(fi−1 − 2fi + fi+1)+O(h5) (5.1.24)

= 1

3
h(fi−1 + 4fi + fi+1)+O(h5),

where the remainder term is zero for all third-degree polynomials. We now determine the
error term for f (x) = (x − xi)

4, which is

RT = 1

3
h(h4 + 0+ h4)−

∫ xi+h

xi−h
x4 dx =

(
2

3
− 2

5

)
h5 = 4

15
h5.

It follows that an asymptotic error estimate for Simpson’s rule is

RT = h5 4

15

f (4)(xi)

4! +O(h6) = h5

90
f (4)(xi)+O(h6). (5.1.25)

A strict error estimate for Simpson’s rule is more difficult to obtain. As for the
midpoint formula, the midpoint xi can be considered as a double point of interpolation; see
Problem 5.1.3. The general error formula (5.1.8) then gives

Ri(f ) = 1

4!
∫ xi+1

xi−1

f (4)(ξx)(x − xi−1)(x − xi)
2(x − xi+1) dx,

170Thomas Simpson (1710–1761), English mathematician best remembered for his work on interpolation and
numerical methods of integration. He taught mathematics privately in the London coffee houses and from 1737
began to write texts on mathematics.
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where (x − xi−1)(x − xi)
2(x − xi+1) has constant negative sign on [xi−1, xi+1]. Using the

mean value theorem gives the error

RT (f ) = 1

90
f (4)(ξ)h5, ξ ∈ [xi − h, xi + h]. (5.1.26)

The remainder can also be obtained from Peano’s error representation. It can be shown
(see [331, p. 152 ff]) that for Simpson’s rule

Rf =
∫

R
f (4)(u)K(u) du,

where the kernel equals

K(u) = − 1

72
(h− u)3(3u+ h)2, 0 ≤ u ≤ h,

and K(u) = K(|u|) for u < 0, K(u) = 0 for |u| > h. This again gives (5.1.26).
In the composite Simpson’s rule one divides the interval [a, b] into an even number

n = 2m steps of length h and uses the formula (5.1.24) on each of m double steps, giving∫ b

a

f (x) dx = h

3
(f0 + 4S1 + 2S2 + fn)+ RT , (5.1.27)

where
S1 = f1 + f3 + · · · + fn−1, S2 = f2 + f4 + · · · + fn−2

are sums over odd and even indices, respectively. The remainder is

RT (f ) =
m−1∑
i=0

h5

90
f (4)(ξi) = (b − a)

180
h4f (4)(ξ), ξ ∈ [a, b]. (5.1.28)

This shows that we have gained two orders of accuracy compared to the trapezoidal rule,
without using more function evaluations. This is why Simpson’s rule is such a popular
general-purpose quadrature rule.

5.1.4 Superconvergence of the Trapezoidal Rule

In general the composite trapezoidal rule integrates exactly polynomials of degree 1 only.
It does much better with trigonometric polynomials.

Theorem 5.1.4.
Consider the integral

∫ 2π
0 tm(x) dx, where

tm(x) = a0 + a1 cos x + a2 cos 2x + · · · + am cosmx

+ b1 sin x + b2 sin 2x + · · · + bm sin mx

is any trigonometric polynomial of degree m. Then the composite trapezoidal rule with step
length h = 2π/n, n ≥ m+ 1, integrates this exactly.
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Proof. See Problem 5.1.16.

Suppose that the function f is infinitely differentiable for x ∈ R, and that f has [a, b]
as an interval of periodicity, i.e., f (x + (b − a)) = f (x) for all x ∈ R. Then

f (k)(b) = f (k)(a), k = 0, 1, 2, . . . ,

hence every term in the Euler–Maclaurin expansion is zero for the integral over the whole
period [a, b]. One could be led to believe that the trapezoidal rule gives the exact value of the
integral, but this is usually not the case. For most periodic functionsf , limr→∞ R2r+2f �= 0;
the expansion converges, of course, though not necessarily to the correct result.

On the other hand, the convergence as h → 0 for a fixed (though arbitrary) r is a
different story; the error bound (5.2.10) shows that

|R2r+2(a, h, b)f | = O(h2r+2).

Since r is arbitrary, this means that for this class of functions, the trapezoidal error tends
to zero faster than any power of h, as h → 0 . We may call this superconvergence. The
application of the trapezoidal rule to an integral over [0,∞) of a function f ∈ C∞(0,∞)

often yields similar features, sometimes even more striking.
Suppose that the periodic function f (z), z = x + iy, is analytic in a strip, |y| < c,

around the real axis. It can then be shown that the error of the trapezoidal rule is

O(e−η/h), h ↓ 0,

whereη is related to the width of the strip. Asimilar result (3.2.19) was obtained in Sec. 3.2.2,
for an annulus instead of a strip. There the trapezoidal rule was used in the calculation of
the integral of a periodic analytic function over a full period [0, 2π ] that defined its Taylor
coefficients. The error was shown to tend to zero faster than any power of the step length4θ .

As a rule, this discussion does not apply to periodic functions which are defined
by periodic continuation of a function originally defined on [a, b] (such as the Bernoulli
functions). They usually become nonanalytic at a and b, and at all points a + (b − a)n,
n = 0,±1,±2, . . . .

The Poisson summation formula is even better than the Euler–Maclaurin formula
for the quantitative study of the trapezoidal truncation error on an infinite interval. For
convenient reference we now formulate the following surprising result.

Theorem 5.1.5.
Suppose that the trapezoidal rule (or, equivalently, the rectangle rule) is applied with

constant step size h to
∫∞
−∞ f (x) dx. The Fourier transform of f reads

f̂ (ω) =
∫ ∞

−∞
f (x)e−iωt dt.

Then the integration error decreases like 2f̂ (2π/h) as h ↓ 0.

Example 5.1.6.
For the normal probability density, we have

f (x) = 1

σ
√

2π
e
− 1

2 (
t
σ
)2

, f̂ (ω) = e
− 1

2 (ωσ)
2

.
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The integration error is thus approximately 2 exp(−2(πσ/h)2). Roughly speaking, the
number of correct digits is doubled if h is divided by

√
2; for example, the error is approx-

imately 5.4 · 10−9 for h = σ , and 1.4 · 10−17 for h = σ/
√

2.

The application of the trapezoidal rule to an integral over [0,∞) of a function f ∈
C∞(0,∞) often yields similar features, sometimes even more striking. Suppose that, for
k = 1, 2, 3, . . . ,

f (2k−1)(0) = 0 and f (2k−1)(x)→ 0, x →∞,

and ∫ ∞

0
|f (2k)(x)| dx <∞.

(Note that for any function g ∈ C∞(−∞,∞) the function f (x) = g(x)+ g(−x) satisfies
such conditions at the origin.) Then all terms of the Euler–Maclaurin expansion are zero,
and one can be misled to believe that the trapezoidal sum gives

∫∞
0 f (x) dx exactly for any

step size h! The explanation is that the remainder R2r+2(a, h,∞) will typically not tend to
zero, as r →∞ for fixed h. On the other hand, if we consider the behavior of the truncation
error as h→ 0 for given r , we find that it is o(h2r ) for any r , just like the case of a periodic
function.

For a finite subinterval of [0,∞), however, the remainder is still typically O(h2), and
for each step the remainder is typically O(h3). So, there is an enormous cancellation of the
local truncation errors, when a C∞-function with vanishing odd-order derivatives at the
origin is integrated by the trapezoidal rule over [0,∞).

Example 5.1.7.
For integrals of the form

∫∞
−∞ f (x) dx, the trapezoidal rule (or the midpoint rule)

often gives good accuracy if one integrates over the interval [−R1, R2], assuming that f (x)
and its lower derivatives are small for x ≤ −R1 and x ≥ R2.

The correct value to six decimal digits of the integral
∫∞
−∞ e−x2

dx isπ1/2 = 1.772454.
For x ± 4, the integrand is less than 0.5 · 10−6. Using the trapezoidal rule with h = 1/2
for the integral over [−4, 4] we get the estimate 1.772453, an amazingly good result. (The
function values have been taken from a six-place table.) The truncation error in the value
of the integral is here less than 1/10,000 of the truncation error in the largest term of
the trapezoidal sum—a superb example of “cancellation of truncation error.” The error
committed when we replace ∞ by 4 can be estimated in the following way:

|R| = 2
∫ ∞

4
e−x

2
dx =

∫ ∞

16
e−t

1√
t
dt <

∫ ∞

16
e−t

1√
16

dt = 1

4
e−16 < 10−7.

5.1.5 Higher-Order Newton–Cotes’ Formulas

The classical Newton–Cotes’quadrature rules are interpolatory rules obtained for w(x) = 1
and equidistant points in [0, 1]. There are two classes: closed formulas, where the endpoints
of the interval belong to the nodes, and open formulas, where all nodes lie strictly in the
interior of the interval (cf. the trapezoidal and midpoint rules).
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The closed Newton–Cotes’ formulas are usually written as∫ nh

0
f (x) dx = h

n∑
j=0

wjf (jh)+ Rn(f ). (5.1.29)

The weights satisfy wj = wn−j and can, in principle, be determined from (5.1.7). Further,
by (5.1.6) it holds that

n∑
j=0

hwj = nh. (5.1.30)

(Note that here we sum over n+ 1 points in contrast to our previous notation.)
It can be shown that the closed Newton–Cotes’ formula has order of accuracy d = n

for n odd and d = n + 1 for n even. The extra accuracy for n even is, as in Simpson’s
rule, due to symmetry. For n ≤ 7 all coefficients wi are positive, but for n = 8 and n ≥ 10
negative coefficients appear. Such formulas may still be useful, but since

∑n
j=0 h|wj | > nh,

they are less robust with respect to errors in the function values fi .
The closed Newton–Cotes’ rules for n = 1 and n = 2 are equivalent to the trapezoidal

rule and Simpson’s rule, respectively. The formula for n = 3 is called the 3/8th rule, for
n = 4 Milne’s rule, and for n = 6 Weddle’s rule. The weightswi = Aci and error coefficient
cn,d of Newton–Cotes’ closed formulas are given for n ≤ 6 in Table 5.1.1.

Table 5.1.1. The coefficients wi = Aci in the n-point closed Newton–Cotes’ formulas.

n d A c0 c1 c2 c3 c4 c5 c6 cn,d

1 1 1/2 1 1 −1/12

2 3 1/3 1 4 1 −1/90

3 3 3/8 1 3 3 1 −3/80

4 5 2/45 7 32 12 32 7 −8/945

5 5 5/288 19 75 50 50 75 19 −275/12,096

6 7 1/140 41 236 27 272 27 236 41 −9/1400

The open Newton–Cotes’ formulas are usually written as∫ nh

0
f (x) dx = h

n−1∑
i=1

wif (ih)+ Rn−1,n(h)

and use n− 1 nodes. The weights satisfy w−j = wn−j . The simplest open Newton–Cotes’
formula for n = 2 is the midpoint rule with step size 2h. The open formulas have order of
accuracy d = n − 1 for n even and d = n − 2 for n odd. For the open formulas negative
coefficients occur already for n = 4 and n = 6.

The weights and error coefficients of open formulas for n ≤ 5 are given in Table 5.1.2.
We recognize the midpoint rule for n = 2. Note that the sign of the error coefficients in the
open rules are opposite the sign in the closed rules.
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Table 5.1.2. The coefficients wi = Aci in the n-point open Newton–Cotes’ formulas.

n d A c1 c2 c3 c4 c5 cn,d

2 1 2 1 1/24

3 1 3/2 1 1 1/4

4 3 4/3 2 −1 2 14/45

5 3 5/24 11 1 1 11 95/144

6 5 3/10 11 −14 26 −14 11 41/140

7 5 7/1440 611 −453 562 562 −453 611 5257/8640

The Peano kernels for both the open and the closed formulas can be shown to have
constant sign (Steffensen [323]). Thus the local truncation error can be written as

Rn(h) = cn,dh
d+1f (d)(ζ ), ζ ∈ [0, nh]. (5.1.31)

It is easily shown that the Peano kernels for the corresponding composite formulas also
have constant sign.

Higher-order Newton–Cotes’ formulas can be found in [1, pp. 886–887]. We now
show how they can be derived using the operator methods developed in Sec. 3.3.4. Let m,
n be given integers and let h be a positive step size. In order to utilize the symmetry of the
problem more easily, we move the origin to the midpoint of the interval of integration. If
we set

xj = jh, fj = f (jh), j = −n/2 : 1 : n/2,

the Newton–Cotes’ formula now reads∫ mh/2

−mh/2
f (x) dx = h

n/2∑
j=−n/2

wjfj + Rm,n(h), w−j = wj . (5.1.32)

Note that j , n/2, and m/2 are not necessarily integers. For a Newton–Cotes’ formula,
n/2− j and m/2− j are evidently integers and hence (m− n)/2 is an integer too. There
may, however, be other formulas, perhaps almost as good, where this is not the case. The
coefficientswj = wj ;m,n are to be determined so that the remainderRm,n vanishes if f ∈ Pq ,
with q as large as possible for given m, n.

The left-hand side of (5.1.32), divided by h, reads in operator form

(emhD/2 − e−mhD/2)(hD)−1f (x0),

which is an even function of hD. By (3.3.42), hD is an odd function of δ. It follows that
the left-hand side is an even function of δ; hence we can, for every m, write

(ehDm/2 − e−hDm/2)(hD)−1 :→ Am(δ
2) = a1m + a2mδ

2 + · · · + ak+1,mδ
2k · · · . (5.1.33)
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We truncate after (say) δ2k; the first neglected term is then ak+2,mδ
2k+2. We saw in Sec. 3.3.4

how to bring a truncated δ2-expansion to B(E)-form,

b1 + b2(E + E−1)+ b3(E
2 + E−2)+ · · · + bk(E

k + E−k),

by matrix multiplication with a matrix M of the form given in (3.3.49). By comparison
with (5.1.32), we conclude that n/2 = k, that the indices j are integers, and that wj = bj+1

(if j ≥ 0). If m is even, this becomes a Newton–Cotes’ formula. If m is odd, it may
still be a useful formula, but it does not belong to the Newton–Cotes’ family, because
(m− n)/2 = m/2− k is no integer.

If n = m, a formula is of the closed type. Its remainder term is the first neglected
term of the operator series, truncated after δ2k , 2k = n = m (and multiplied by h). Hence
the remainder of (5.1.32) can be estimated by a2+m/2δ

m+2f0 or (better)

Rm,m ∼ (am/2+2/m)H(hD)m+2f0,

where we call H = mh the “bigstep.”
If the integral is computed over [a, b] by means of a sequence of bigsteps, each of

length H , an estimate of the global error has the same form, except that H is replaced by
b− a and f0 is replaced by maxx∈[a,b] |f (x)|. The exponent of hD in an error estimate that
contains H or b − a is known as the global order of accuracy of the method.

If n < m, a formula of the open type is obtained. Among the open formulas we shall
only consider the case that n = m − 2, which is the open Newton–Cotes’ formula. The
operator expansion is truncated after δm−2, and we obtain

Rm−2,m ∼ (am/2+1/m)H(hD)mf0.

Formulas with n > m are rarely mentioned in the literature (except for m = 1). We
do not understand why; it is rather common that an integrand has a smooth continuation
outside the interval of integration.

We next consider the effect of a linear transformation of the independent variable.
Suppose that a formula

N∑
j=1

ajf (tj )−
∫ 1

0
f (t) dt ≈ cNf

(N)

has been derived for the standard interval [0, 1]. Setting x = xk + th, dx = hdt we find
that the corresponding formula and error constant for the interval [xk, xk + h] reads

N∑
j=1

ajg(xk + htj )−
∫ xk+h

xk

g(x) dx ≈ cNh
N+1g(N)(xk). (5.1.34)

This error estimate is valid asymptotically as h → 0. The local order of accuracy, i.e.,
over one step of length h, is N +1; the global order of accuracy, i.e., over (b−a)/h steps
of length h, becomes N .

For example, the trapezoidal rule is exact for polynomials of degree 1 and hence
N = 2. For the interval [0, 1], L(t2) = 1

3 , L̃(t2) = 1
2 , and thus c2 = 1

2 (
1
2 − 1

3 ) = 1/12. On
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an interval of length h the asymptotic error becomes h3g′′/12. The local order of accuracy
is N + 1 = 3; the global order of accuracy is N = 2.

If the “standard interval” is [−1, 1] instead, the transformation becomes x = 1
2ht ,

and h is to be replaced by 1
2h everywhere in (5.1.34). Be careful about the exact meaning

of a remainder term for a formula of this type provided by a table.
We shall illustrate the use of the Cauchy–FFT method for computing the coefficients

aim in the expansion (5.1.33). In this way extensive algebraic calculations are avoided.171

It can be shown that the exact coefficients are rational numbers, though it is sometimes hard
to estimate in advance the order of magnitude of the denominators. The algorithm must
be used with judgment. Figure 5.1.1 was obtained for N = 32, r = 2; the absolute errors
of the coefficients (see Lemma 3.1.2 about the error estimation) are then less than 10−13.
The smoothness of the curves for j ≥ 14 indicates that the relative accuracy of the values
of am,j are still good there; in fact, other computations show that it is still good when the
coefficients are as small as 10−20.

0 2 4 6 8 10 12 14 16 18 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

a
mj

, for m=2:2:14,  j=0:20

m
=

2:
2:

14

j

m=2 8 14

Figure 5.1.1. The coefficients |am,j | of the δ2-expansion for m = 2 : 2 : 14,
j = 0 : 20. The circles are the coefficients for the closed Cotes’formulas, i.e., j = 1+m/2.

The coefficients are first obtained in floating-point representation. The transformation
to rational form is obtained by a continued fraction algorithm, described in Example 3.5.3.
For the case m = 8 the result reads

A8(δ
2) = 8+ 64

3
δ2 + 688

45
δ4 + 736

189
δ6 + 3956

14,175
δ8 − 2368

467,775
δ10 + . . . . (5.1.35)

171These could, however, be carried out using a system such as Maple.
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The closed integration formula becomes∫ x4

−x4

f (x)dx = 4h

14,175

(
−4540f0 + 10,496(f1 + f−1)− 928(f2 + f−2)

+ 5888(f3 + f−3)+ 989(f4 + f−4)
)
+ R, (5.1.36)

R ∼ 296

467,775
Hh10f (10)(x0). (5.1.37)

It goes without saying that this is not how Newton and Cotes found their methods. Our
method may seem complicated, but the MATLAB programs for this are rather short, and to
a large extent useful for other purposes. The computation of about 150 Cotes coefficients
and 25 remainders (m = 2 : 14) took less than two seconds on a PC. This includes the
calculation of several alternatives for rational approximations to the floating-point results.
For a small number of the 150 coefficients the judicious choice among the alternatives took,
however, much more than two (human) seconds; this detail is both science and art.

It was mentioned that if m is odd, (5.1.33) does not provide formulas of the Newton–
Cotes’ family, since (m − n)/2 is no integer, nor are the indices j in (5.1.32) integers.
Therefore, the operator associated with the right-hand side of (5.1.32) is of the form

c1(E
1/2 + E−1/2)+ c2(E

3/2 + E−3/2)+ c3(E
5/2 + E−5/2)+ · · · .

If it is divided algebraically byµ = 1/2(E1/2+E−1/2), however, it becomes theB(E)-form
(say)

b′1 + b′2(E + E−1)+ b′3(E
2 + E−2)+ · · · + bk(E

k + E−k).

If m is odd, we therefore expand

(ehDm/2 − e−hDm/2)(hD)−1/µ, µ =
√

1+ δ2/4,

into a δ2-series, with coefficientsa′j . Again, this can be done numerically by the Cauchy–FFT
method. For eachm, two truncated δ2-series (one for the closed and one for the open case) are
then transformed intoB(E)-expressions numerically by means of the matrixM , as described
above. The expressions are then multiplied algebraically by µ = (1/2)(E1/2+E−1/2). We
then have the coefficients of a Newton–Cotes’ formula with m odd.

The asymptotic error is

a′m/2+1H(hD)m+1 and a′m/2−1H(hD)m−1

for the closed type and open type, respectively (2k = m−1). The global orders of accuracy
for Newton–Cotes’ methods with odd m are thus the same as for the methods where m is
one less.

5.1.6 Fejér and Clenshaw–Curtis Rules

Equally spaced interpolation points as used in the Newton–Cotes’ formulas are useful for
low degrees but can diverge as fast as 2n as n → ∞. Quadrature rules which use a set of
points which cluster near the endpoints of the interval have better properties for large n.
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Fejér [115] suggested using the zeros of a Chebyshev polynomial of first or second
kind as interpolation points for quadrature rules of the form∫ 1

−1
f (x) dx =

n∑
k=0

wkf (xk). (5.1.38)

Fejér’s first rule uses the zeros of the Chebyshev polynomialTn(x) = cos(n arccos x)
of the first kind in (−1, 1), which are

xk = cos θk, θk = (2k − 1)π

2n
, k = 1 : n. (5.1.39)

The following explicit formula for the weights is known (see [91]):

w
f 1
k = 2

n

(
1− 2

�n/2�∑
j=1

cos(2jθk)

4j 2 − 1

)
, k = 1 : n. (5.1.40)

Fejér’s second rule uses the zeros of the Chebyshev polynomial Un−1(x) of the second
kind, which are the extreme points of Tn(x) in (−1, 1) (see Sec. 3.2.3):

xk = cos θk, θk = kπ

n
, k = 1 : n− 1. (5.1.41)

An explicit formula for the weights is (see [91])

w
f 2
k = 4 sin θk

n

�n/2�∑
j=1

sin(2j − 1)θk
2j − 1

, k = 1 : n− 1. (5.1.42)

Both Fejér’s rules are open quadrature rules, i.e., they do not use the endpoints of the interval
[−1, 1]. Fejér’s second rule is the more practical, because going from n+1 to 2n+1 points,
only n new function values need to be evaluated; cf. the trapezoidal rule.

The quadrature rule of Clenshaw and Curtis [71] is a closed version of Fejér’s second
rule; i.e., the nodes are the n+1 extreme points of Tn(x), in [−1, 1], including the endpoints
x0 = 1, xn = −1. An explicit formula for the Clenshaw–Curtis weights is

wcc
k = ck

n

(
1−

�n/2�∑
j=1

bj

4j 2 − 1
cos(2jθk)

)
, k = 0 : n, (5.1.43)

where

bj =
{

1 if j = n/2,
2 if j < n/2,

ck =
{

1 if k = 0, n,
2 otherwise.

(5.1.44)

In particular the weights at the two boundary points are

wcc
0 = wcc

n = 1

n2 − 1+mod (n, 2)
. (5.1.45)

For both the Fejér and Clenshaw–Curtis rules the weights can be shown to be positive;
see Imhof [203]. Therefore the convergence of In(f ) as n → ∞ for all f ∈ C[−1, 1] is
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assured for these rules by the following theorem, which is a consequence of Weierstrass’
theorem.

Theorem 5.1.6.
Let xnj and anj , where j = 1 : n, n = 1, 2, 3, . . . , be triangular arrays of nodes and

weights, respectively, and suppose that anj > 0 for all n, j ≥ 1. Consider the sequence of
quadrature rules

Inf =
n∑

j=1

anjf (xnj )

for the integral If = ∫ b

a
f (x)w(x) dx, where [a, b] is a closed, bounded interval, andw(x)

is an integrable weight function. Suppose that Inp = Ip for all p ∈ Pkn , where {kn}∞n=1 is
a strictly increasing sequence. Then

Inf → If ∀f ∈ C[a, b].
Note that this theorem is not applicable to Cotes’ formulas, where some weights are

negative.
Convergence will be fast for the Fejér and Clenshaw–Curtis rules provided the in-

tegrand is k times continuously differentiable—a property that the user can often check.
However, if the integrand is discontinuous, the interval of integration should be partitioned
at the discontinuities and the subintervals treated separately.

Despite its advantages these quadrature rules did not receive much use early on,
because computing the weights using the explicit formulas given above is costly (O(n2)

flops) and not numerically stable for large values of n. However, it is not necessary to
compute the weights explicitly. Gentleman [151, 150] showed how the Clenshaw–Curtis
rule can be implemented by means of a discrete cosine transform (DCT; see Sec. 4.7.4). We
recall that the FFT is not only fast, but also very resistant to roundoff errors.

The interpolation polynomial Ln(x) can be represented in terms of Chebyshev poly-
nomials

Ln(x) =
n∑′′

k=0

ckTk(x), ck = 2

n

n∑′′

j=0

f (xj ) cos

(
kjπ

n

)
,

where xj = cos(jπ/n). This is the real part of an FFT. (The double prime on the sum
means that the first and last terms are to be halved.) Then we have

In(f ) =
∫ 1

−1
Ln(x) dx =

n∑′′

k=0

ckµk, µk =
∫ 1

−1
Tk(x) dx,

where µk are the moments of the Chebyshev polynomials. It can be shown (Problem 5.1.7)
that

µk =
∫ 1

−1
Tk(x) dx =

{
0 if k odd,
2/(1− k2) if k even.

The following MATLAB program, due to Trefethen [352], is a compact implementation of
this version of the Clenshaw–Curtis quadrature.

Copyright ©2008 by the Society for Industrial and Applied Mathematics. 
This electronic version is for personal use and may not be duplicated or distributed. 
 
From "Numerical Methods in Scientific Computing, Volume 1" by Germund Dalquist and Åke Björck. 
This book is available for purchase at www.siam.org/catalog.



dqbjvol1
2007/12/28
page 541

5.1. Interpolatory Quadrature Rules 541

Algorithm 5.1. Clenshaw–Curtis Quadrature.

function I = clenshaw_curtis(f,n);
% Computes the integral I of f over [-1,1] by the
% Clenshaw-Curtis quadrature rule with n+1 nodes.
x = cos(pi*(0:n)’/n);
%Chebyshev extreme points
fx = feval(f,x)/(2*n);
%Fast Fourier transform
g = real(fft(fx([1:n+1 n:-1:2))));
%Chebyshev coefficients
a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)];
w = 0*a’; w(1:2:end) = 2./(1-(0:2:n).ˆ2);
I = w*a;

A fast and accurate algorithm for computing the weights in the Fejér and Clenshaw–
Curtis rules inO(n log n)flops has been given by Waldvogel [361]. The weights are obtained
as the inverse FFT of certain vectors given by explicit rational expressions. On an average
laptop this takes just about five seconds for n = 220 + 1 = 1,048,577 nodes!

For Fejér’s second rule the weights are the inverse discrete FFT of the vector v with
components vk given by the expressions

vk = 2

1− 4k2
, k = 0 : �n/2� − 1,

v�n/2� = n− 3

2�n/2� − 1
− 1, (5.1.46)

vn−k = vk, k = 1 : �(n− 1)/2�.

(Note that this will give zero weights for k = 0, n corresponding to the endpoint nodes
x0 = −1 and xn = 1.)

For the Clenshaw–Curtis rule the weights are the inverse FFT of the vector v + g,
where

gk = −wcc
0 , k = 0 : �n/2� − 1,

g�n/2� = w0 [(2−mod (n, 2)) n− 1] , (5.1.47)

gn−k = gk, k = 1 : �(n− 1)/2�,

and wcc
0 is given by (5.1.45). For the weights Fejér’s first rule and MATLAB files imple-

menting the algorithm, we refer to [361].
Since the complexity of the inverse FFT is O(n log n), this approach allows fast and

accurate calculation of the weights for rules of high order, in particular when n is a power
of 2. For example, using the MATLAB routine IFFT the weights for n = 1024 only takes
a few milliseconds on a PC.
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Review Questions
5.1.1 Name three classical quadrature methods and give their order of accuracy.

5.1.2 What is meant by a composite quadrature rule? What is the difference between local
and global error?

5.1.3 What is the advantage of including a weight function w(x) > 0 in some quadrature
rules?

5.1.4 Describe some possibilities for treating integrals where the integrand has a singularity
or is “almost singular.”

5.1.5 For some classes of functions the composite trapezoidal rule exhibits so-called super-
convergence. What is meant by this term? Give an example of a class of functions
for which this is true.

5.1.6 Give an account of the theoretical background of the classical Newton–Cotes’ rules.

Problems and Computer Exercises
5.1.1 (a) Derive the closed Newton–Cotes’ rule for m = 3,

I = 3h

8
(f0 + 3f1 + 3f2 + f3)+ RT , h = (b − a)

3
,

also known as Simpson’s (3/8)-rule.

(b) Derive the open Newton–Cotes’ rule for m = 4,

I = 4h

3
(2f1 − f2 + 2f3)+ RT , h = (b − a)

4
.

(c) Find asymptotic error estimates for the formulas in (a) and (b) by applying them
to suitable polynomials.

5.1.2 (a) Show that Simpson’s rule is the unique quadrature formula of the form∫ h

−h
f (x) dx ≈ h(a−1f (−h)+ a0f (0)+ a1f (h))

that is exact whenever f ∈ P4. Try to find several derivations of Simpson’s rule,
with or without the use of difference operators.

(b) Find the Peano kernel K2(u) such that Rf = ∫R f ′′(u)K2(u) du, and find the
best constants c, p such that

|Rf | ≤ chp max |f ′′(u)| ∀f ∈ C2[−h, h].
If you are going to deal with functions that are not in C3, would you still prefer
Simpson’s rule to the trapezoidal rule?
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5.1.3 The quadrature formula∫ xi+1

xi−1

f (x) dx ≈ h
(
af (xi−1)+ bf (xi)+ cf (xi+1)

)+ h2df ′(xi)

can be interpreted as a Hermite interpolatory formula with a double point at xi . Show
that d = 0 and that this formula is identical to Simpson’s rule. Then show that the
error can be written as

R(f ) = 1

4!
∫ xi+1

xi−1

f (4)(ξx)(x − xi−1)(x − xi)
2(x − xi+1) dx,

wheref (4)(ξx) is a continuous function of x. Deduce the error formula for Simpson’s
rule. Setting x = xi + ht , we get

R(f ) = h4

24
f (4)(ξi)

∫ 1

−1
(t + 1)t2(t − 1)h dt = h5

90
f (4)(ξi).

5.1.4 A second kind of Newton–Cotes’ open quadrature rule uses the midpoints of the
equidistant grid xi = ih, i = 1 : n, i.e.,∫ xn

x0

f (x) dx =
n∑

i=1

wifi−1/2, xi−1/2 = 1

2
(xi−1 + xi).

(a) For n = 1 we get the midpoint rule. Determine the weights in this formula for
n = 3 and n = 5. (Use symmetry!)

(b) What is the order of accuracy of these two rules?

5.1.5 (a) Simpson’s rule with end corrections is a quadrature formula of the form∫ h

−h
f (x) dx ≈ h

(
αf (−h)+ βf (0)+ αf (h)

)+ h2γ (f ′(−h)− f ′(h)),

which is exact for polynomials of degree five. Determine the weights α, β, γ by
using the test functions f (x) = 1, x2, x4. Use f (x) = x6 to determine the error
term.

(b) Show that in the corresponding composite formula for the interval [a, b] with
b − a = 2nh, only the endpoint derivatives f ′(a) and f ′(b) are needed.

5.1.6 (Lyness) Consider the integral

I (f, g) =
∫ nh

0
f (x)g′(x) dx. (5.1.48)

An approximation related to the trapezoidal rule is

Sm = 1

2

n−1∑
j=0

[
f (jh)+ f ((j + 1)h)

][
g((j + 1)h)− (g(jh)

]
,
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which requires 2(m+1) function evaluations. Similarly, an analogue to the midpoint
rule is

Rm = 1

2

n−1∑
j=0

′′f (jh)
[
g((j + 1)h)− (g((j − 1)h)

]
,

where the double prime on the summation indicates that the extreme values j = 0
and j = m are assigned a weighting factor 1

2 . This rule requires 2(m+ 2) function
evaluations, two of which lie outside the interval of integration. Show that the
difference Sm − Rm is of order O(h2).

5.1.7 Show the relations

∫ x

−1
Tn(t) dt =



Tn+1(x)

2(n+ 1)
− Tn−1(x)

2(n− 1)
+ (−1)n+1

n2 − 1
if n ≥ 2,

(T2(x)− 1)

4
if n = 1,

T1(x)+ 1 if n = 0.

Then deduce that ∫ 1

−1
Tn(x) dx =

{
0 if n odd,
2/(1− n2) if n even.

Hint: Make a change of variable in the integral and use the trigonometric identity
2 cos nφ sin φ = sin(n+ 1)φ − sin(n− 1)φ.

5.1.8 Compute the integral
∫∞

0 (1 + x2)−4/3 dx with five correct decimals. Expand the
integrand in powers of x−1 and integrate termwise over the interval [R,∞] for a
suitable value ofR. Then use a Newton–Cotes’rule on the remaining interval [0, R].

5.1.9 Write a program for the derivation of a formula for integrals of the form I =∫ 1
0 x−1/2f (x) dx that is exact for f ∈ Pn and uses the values f (xi), i = 1 : n, by

means of the power basis.

(a) Compute the coefficients bi for n = 6 : 8 with equidistant points,
xi = (i − 1)/(n− 1), i = 1 : n. Apply the formulas to the integrals∫ 1

0
x−1/2e−x dx,

∫ 1

0

dx

sin
√
x
,

∫ 1

0
(1− t3)−1/2 dt.

In the first of the integrals compare with the result obtained by series expansion in
Problem 3.1.1. A substitution is needed for bringing the last integral to the right
form.
(b) Do the same for the case where the step size xi+1 − xi grows proportionally to
i; x1 = 0; xn = 1. Is the accuracy significantly different compared to (a), for the
same number of points?

(c) Make some very small random perturbations of the xi , i = 1 : n in (a), (say) of
the order of 10−13. Of which order of magnitude are the changes in the coefficients
bi , and the changes in the results for the first of the integrals?
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5.1.10 Propose a suitable plan (using a computer) for computing the following integrals,
for s = 0.5, 0.6, 0.7, . . . , 3.0.

(a)
∫∞

0 (x3 + sx)−1/2 dx; (b)
∫∞

0 (x2 + 1)−1/2e−sx dx, error < 10−6;

(c)
∫∞
π
(s + x)−1/3 sin x dx.

5.1.11 It is not true that any degree of accuracy can be obtained by using a Newton–Cotes’
formula of sufficiently high order. To show this, compute approximations to the
integral ∫ 4

−4

dx

1+ x2
= 2 tan−1 4 ≈ 2.6516353 . . .

using the closed Newton–Cotes’ formula with n = 2, 4, 6, 8. Which formula gives
the smallest error?

5.1.12 For expressing integrals appearing in the solution of certain integral equations, the
following modification of the midpoint rule is often used:∫ xn

x0

K(xj , x)y(x) dx =
n−1∑
i=0

mijyi+1/2,

where yi+1/2 = y( 1
2 (xi + xi+1)) and mij is the moment integral

mij =
∫ xi+1

xi

K(xj , x) dx.

Derive an error estimate for this formula.

5.1.13 (a) Suppose that you have found a truncated δ2-expansion, (say) A(δ2) ≡ a1 +
a2δ

2+· · ·+ak+1δ
2k . Then an equivalent symmetric expression of the form B(E) ≡

b1 + b2(E + E−1)+ · · · + bk+1(E
k + E−k) can be obtained as b = Mk+1a, where

a, b are column vectors for the coefficients, and Mk+1 is the (k + 1) × (k + 1)
submatrix of the matrix M given in (3.3.49).
Use this for deriving (5.1.36) from (5.1.35). How do you obtain the remainder term?
If you obtain the coefficients as decimal fractions, multiply them by 14,175/4 in
order to check that they agree with (5.1.36).

(b) Use Cauchy–FFT for deriving (5.1.35), and the open formula and the remainder
for the same interval.

(c) Set zn = ∇−1yn − 4−1y0. We have, in the literature, seen the interpretation
that zn = ∑n

j=0 yj if n ≥ 0. It seems to require some extra conditions to be true.
Investigate if the conditions z−1 = y−1 = 0 are necessary and sufficient. Can you
suggest better conditions? (The equations 44−1 = ∇∇−1 = 1 mentioned earlier
are assumed to be true.)

5.1.14 (a) Write a program for the derivation of quadrature formulas and error estimates
using the Cauchy–FFT method in Sec. 5.1.5 for m = n − 1, n, n + 1. Test the
formulas and the error estimates for some m, n on some simple (though not too
simple) examples. Some of these formulas are listed in the Handbook [1, Sec. 25.4].
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In particular, check the closed Newton–Cotes’ 9-point formula (n = 8).

(b) Sketch a program for the case that h = 1/(2n + 1), with the computation of f
at 2m symmetrical points.

(c) [1, Sec. 25.4] gives several Newton–Cotes’ formulas of closed and open types,
with remainders. Try to reproduce and extend their tables with techniques related
to Sec. 5.3.1.

5.1.15 Compute the integral
1

2π

∫ 2π

0
e

1√
2

sin x
dx

by the trapezoidal rule, using h = π/2k k = 0, 1, 2, . . . , until the error is on the
level of the roundoff errors. Observe how the number of correct digits vary with h.
Notice that Romberg is of no use in this problem.

Hint: First estimate how well the function g(x) = ex/
√

2 can be approximated by a
polynomial in P8 for x ∈ [−1, 1]. The estimate found by the truncated Maclaurin
expansion is not quite good enough. Theorem 3.1.5 provides a sharper estimate with
an appropriate choice of R; remember Scylla and Charybdis.

5.1.16 (a) Show that the trapezoidal rule, with h = 2π/(n+1), is exact for all trigonometric
polynomials of period 2π , i.e., for functions of the type

n∑
k=−n

cke
ikt , i2 = −1,

when it is used for integration over a whole period.

(b) Show that if f (x) can be approximated by a trigonometric polynomial of degree
n so that the magnitude of the error is less than ε, in the interval (0, 2π), then the
error with the use of the trapezoidal rule with h = 2π/(n+ 1) on the integral

1

2π

∫ 2π

0
f (x) dx

is less than 2ε.

(c) Use the above to explain the sensationally good result in Problem 5.1.15 above,
when h = π/4.

5.2 Integration by Extrapolation

5.2.1 The Euler–Maclaurin Formula

Newton–Cotes’ rules have the drawback that they do not provide a convenient way of
estimating the error. Also, for high-order rules negative weights appear. In this section we
will derive formulas of high order, based on the Euler–Maclaurin formula (see Sec. 3.4.5),
which do not share these drawbacks.
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Let xi = a + ih, xn = b, and let T (a : h : b)f denote the trapezoidal sum

T (a : h : b)f =
n∑

i=1

h

2

(
f (xi−1)+ f (xi)

)
. (5.2.1)

According to Theorem 3.4.10, if f ∈ C2r+2[a, b], then

T (a : h : b)f −
∫ b

a

f (x) dx = h2

12

(
f ′(b)− f ′(a)

)− h4

720

(
f ′′′(b)− f ′′′(a)

)
+ · · · + B2rh

2r

(2r)!
(
f (2r−1)(b)− f (2r−1)(a)

)+ R2r+2(a, h, b)f.

By (3.4.37) the remainder R2r+2(a, h, b)f is O(h2r+2) and represented by an integral with
a kernel of constant sign in [a, b]. The estimation of the remainder is very simple in
certain important particular cases. Note that although the expansion contains derivatives at
the boundary points only, the remainder requires that |f (2r+2)| is integrable on the whole
interval [a, b].

We recall the following simple and useful relation between the trapezoidal sum and
the midpoint sum (cf. (5.1.21)):

M(a : h : b)f =
n∑

i=1

hf (xi−1/2) = 2T

(
a : 1

2
h : b

)
f − T (a : h : b)f. (5.2.2)

From this one easily derives the expansion

M(a : h : b)f =
∫ b

a

f (x) dx − h2

24

(
f ′(b)− f ′(a)

)+ 7h4

5760

(
f ′′′(b)− f ′′′(a)

)
+ · · · +

( 1

22r−1
− 1
)B2rh

2r

(2r)!
(
f (2r−1)(b)− f (2r−1)(a)

)+ · · · ,
which has the same relation to the midpoint sum as the Euler–Maclaurin formula has to the
trapezoidal sum.

The Euler–Maclaurin formula can be used for highly accurate numerical integration
when the values of derivatives of f are known at x = a and x = b. It is also possible to use
difference approximations to estimate the derivatives needed. A variant with uncentered
differences is Gregory’s172 quadrature formula:∫ b

a

f (x) dx = h
En − 1

hD
f0 = h

(
fn

− ln(1− ∇) −
f0

ln(1+4)

)
= T (a;h; b)+ h

∞∑
j=1

aj+1(∇j fn + (−4)jf0),

172James Gregory (1638–1675), a Scotch mathematician, discovered this formula long before the Euler–
Maclaurin formula. It seems to have been used primarily for numerical quadrature. It can be used also for
summation, but the variants with central differences are typically more efficient.
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where T (a : h : b) is the trapezoidal sum. The operator expansion must be truncated at
∇kfn and 4lf0, where k ≤ n, l ≤ n. (Explain why the coefficients aj+1, j ≥ 1, occur in
the implicit Adams formula too; see Problem 3.3.10 (a).)

5.2.2 Romberg’s Method

The Euler–Maclaurin formula is the theoretical basis for the application of repeated Richard-
son extrapolation (see Sec. 3.4.6) to the results of the trapezoidal rule. This method is known
as Romberg’s method.173 It is one of the most widely used methods, because it allows a
simple strategy for the automatic determination of a suitable step size and order. Romberg’s
method was made widely known through Stiefel [329]. A thorough analysis of the method
was carried out by Bauer, Rutishauser, and Stiefel in [20], which we shall refer to for proof
details.

Let f ∈ C2m+2[a, b] be a real function to be integrated over [a, b] and denote the
trapezoidal sum by T (h) = T (a : h : b)f . By the Euler–Maclaurin formula it follows that

T (h)−
∫ b

a

f (x) dx = c2h
2 + c4h

4 + · · · + cmh
2m + τm+1(h)h

2m+2, (5.2.3)

where ck = 0 if f ∈ Pk . This suggests the use of repeated Richardson extrapolation applied
to the trapezoidal sums computed with step lengths

h1 = b − a

n1
, h2 = h1

n1
, . . . , hq = h1

nq
, (5.2.4)

wheren1, n2, . . . , nq are strictly increasing positive integers. If we setTm,1 = T (a, hm, b)f ,
m = 1 : q, then using Neville’s interpolation scheme the extrapolated values can be
computed from the recursion:

Tm,k+1 = Tm,k + Tm,k − Tm−1,k

(hm−k/hm)2 − 1
, 1 ≤ k < m. (5.2.5)

Romberg used step sizes in a geometric progression, hm/hm−1 = q = 2. In this case the
denominators in (5.2.5) become 22k − 1. This choice has the advantage that successive
trapezoidal sums can be computed using the relation

T

(
h

2

)
= 1

2
(T (h)+M(h)), M(h) =

n∑
i=1

hf (xi−1/2), (5.2.6)

where M(h) is the midpoint sum. This makes it possible to reuse the function values that
have been computed earlier.

We remark that, usually, a composite form of Romberg’s method is used, the method is
applied to a sequence interval [a+ iH, a+ (i+1)H ] for some bigstep H . The applications

173Werner Romberg (1909–2003) was a German mathematician. For political reasons he fled Germany in 1937,
first to Ukraine and then to Norway, where in 1938 he joined the University of Oslo. He spent the war years in
Sweden and then returned to Norway. In 1949 he joined the Norwegian Institute of Technology in Trondheim. He
was called back to Germany in 1968 to take up a position at the University of Heidelberg.
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of repeated Richardson extrapolation and the Neville algorithms to differential equations
belong to the most important.

Rational extrapolation can also be used. This gives rise to a recursion of a form similar
to (5.2.5):

Tm,k+1 = Tm,k + Tm,k − Tm−1,k(
hm−k
hm

)2[
1− Tm,k − Tm−1,k

Tm,k − Tm−1,k−1

]
− 1

, 1 ≤ k ≤ m; (5.2.7)

see Sec. 4.3.3.
For practical numerical calculations the values of the coefficients ck in (5.2.3) are

not needed, but they are used, for example, in the derivation of an error bound; see Theo-
rem 5.2.1. It is also important to remember that the coefficients depend on derivatives of
increasing order; the success of repeated Richardson extrapolations is thus related to the
behavior in [a, b] of the higher derivatives of the integrand.

Theorem 5.2.1 (Error Bound for Romberg’s Method).
The items Tm,k in Romberg’s method are estimates of the integral

∫ b

a
f (x) dx that can

be expressed as a linear functional,

Tm,k = (b − a)

n∑
j=0

α
(k)
m,jf (a + jh), (5.2.8)

where n = 2m−1, h = (b − a)/n, and

n∑
j=0

α
(k)
m,j = 1, α

(k)
m,j > 0. (5.2.9)

The remainder functional for Tm,k is zero for f ∈ P2k , and its Peano kernel is positive in
the interval (a, b). The truncation error of Tm,k reads

Tm,k −
∫ b

a

f (x)dx = rkh
2k(b − a)f (2k)

(
1

2
(a + b)

)
+O(h2k+2(b − a)f (2k+2))

= rkh
2k(b − a)f (2k)(ξ), ξ ∈ (a, b), (5.2.10)

where
rk = 2k(k−1)|B2k|/(2k)!, h = 21−m(b − a).

Proof. Sketch: Equation (5.2.8) follows directly from the construction of the Romberg
scheme. (It is for theoretical use only; the recursion formulas are better for practical use.)
The first formula in (5.2.9) holds becauseTm,k is exact iff = 1. The second formula is easily
proved for low values of k. The general proof is more complicated; see [20, Theorem 4].

The Peano kernel for m = k = 1 (the trapezoidal rule) was constructed in Exam-
ple 3.3.7. For m = k = 2 (Simpson’s rule), see Sec. 5.1.3. The general case is more compli-
cated. Recall that, by Corollary 3.3.9 of Peano’s remainder theorem, a remainder formula
with a mean value ξ ∈ (a, b) exists if and only if the Peano kernel does not change sign.
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Bauer, Rutishauser, and Stiefel [20, pp. 207–210] constructed a recursion formula
for the kernels, and succeeded in proving that they are all positive, by an ingenious use
of the recursion. The expression for rk is also derived there, although with a different
notation.

From (5.2.9) it follows that if the magnitude of the irregular error in f (a + jh) is at
most ε, then the magnitude of the inherited irregular error in Tm,k is at most ε(b−a). There
is another way of finding rk . Note that for each value of k, the error of Tk,k for f (x) = x2k

can be determined numerically. Then rk can be obtained from (5.2.10). Tm,k is the same
formula as Tk,k , although with a different h.

According to the discussion of repeated Richardson extrapolation in Sec. 3.4.6, one
continues the process until two values in the same row agree to the desired accuracy. If no
other error estimate is available, mink |Tm,k−Tm,k−1| is usually chosen as an estimate of the
truncation error, even though it is usually a strong overestimate. A feature of the Romberg
algorithm is that it also contains exits with lower accuracy at a lower cost.

Example 5.2.1 (A Numerical Illustration to Romberg’s Method).
Use Romberg’s method to compute the integral (cf. Example 5.1.5)∫ 0.8

0

sin x

x
dx.

The midpoint and trapezoidal sums are with ten correct decimals equal to

h M(h)f T (h)f

0.8 0.77883 66846 0.75867 80454
0.4 0.77376 69771 0.76875 73650
0.2 0.77251 27161 0.77126 21711
0.1 0.77188 74436

.

It can be verified that in this example the error is approximately proportional to h2 for both
M(h) and T (h). We estimate the error in T (0.1) to be 1

3 6.26 · 10−4 ≤ 2.1 · 10−4.
The trapezoidal sums are then copied to the first column of the Romberg scheme.

Repeated Richardson extrapolation is performed giving the following table.

m Tm1 Tm2 Tm3 Tm4

1 0.75867 80454
2 0.76875 73650 0.77211 71382
3 0.77126 21711 0.77209 71065 0.77209 57710
4 0.77188 74437 0.77209 58678 0.77209 57853 0.77209 57855
5 0.77204 37039 0.77209 57906 0.77209 57855 0.77209 57855

.

We find that |T44 − T43| = 2 · 10−10, and the irregular errors are less than 10−10. Indeed, all
ten digits in T44 are correct, and I = 0.77209 57854 82 . . . .Note that the rate of convergence
in successive columns is h2, h4, h6, h8, . . . .

The following MATLAB program implements Romberg’s method. In each major
step a new row in the Romberg table is computed.
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Algorithm 5.2. Romberg’s Method.

function [I, md, T] = romberg(f,a,b,tol,q);
% Romberg’s method for computing the integral of f over [a,b]
% using at most q extrapolations. Stop when two adjacent values
% in the same column differ by less than tol or when q
% extrapolations have been performed. Output is an estimate
% I of the integral with error bound md and the active part
% of the Romberg table.
%
T = zeros(q+2,q+1);
h = b - a; m = 1; P = 1;
T(1,1) = h*(feval(f,a) + feval(f,b))/2;
for m = 2:q+1

h = h/2; m = 2*m;
M = 0; % Compute midpoint sum
for k = 1:2:m

M = M + feval(f, a+k*h);
end
T(m,1) = T(m-1,1)/2 + h*M;
kmax = min(m-1,q);
for k = 1:kmax % Repeated Richardson extrapolation

T(m,k+1) = T(m,k) + (T(m,k) - T(m-1,k))/(2ˆ(2*k) - 1);
end
[md, kb] = min(abs(T(m,1:kmax) - T(m-1,1:kmax)));
I = T(m,kb);
if md <= tol % Check accuracy

T = T(1:m,1:kmax+1); % Active part of T
return
end

end

In the above algorithm the value Tm,k is accepted when |Tm,k − Tm−1,k| ≤ tol, where
tol is the permissible error. Thus one extrapolates until two values in the same column agree
to the desired accuracy. In most situations, this gives, if h is sufficiently small, with a large
margin a bound for the truncation error in the lower of the two values. Often instead the
subdiagonal error criterion |Tm,m−1 − Tm,m| < δ is used, and Tmm taken as the numerical
result.

If the use of the basic asymptotic expansion is doubtful, then the uppermost diagonal
of the extrapolation scheme should be ignored. Such a case can be detected by inspection
of the difference quotients in a column. If for some k, where Tk+2,k has been computed and
the modulus of the relative irregular error of Tk+2,k − Tk+1,k is less than (say) 20%, and,
most important, the difference quotient

(Tk+1,k − Tk,k)/(Tk+2,k − Tk+1,k)

is very different from its theoretical value qpk , then the uppermost diagonal is to be ignored
(except for its first element).
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Sometimes several of the uppermost diagonals are to be ignored. For the integration
of a class of periodic functions the trapezoidal rule is superconvergent; see Sec. 5.1.4. In
this case all the difference quotients in the first column are much larger than qp1 = q2.
According to the rule just formulated, every element of the Romberg scheme outside the
first column should be ignored. This is correct; in superconvergent cases Romberg’s method
is of no use; it destroys the excellent results that the trapezoidal rule has produced.

Example 5.2.2.
The remainder for Tk,k in Romberg’s method reads

Tk,k −
∫ b

a

f (x) dx = rkh
2k (b − a)f 2k (ξ).

For k = 1, T11 is the trapezoidal rule with remainder r1h
2(b − a)f (2)(ξ). By working

algebraically in the Romberg scheme, we see that T22 is the same as Simpson’s rule. It can
also be shown that T33 is the same as Milne’s formula, i.e., the five-point closed Newton–
Cotes’ formula. It follows that for k = {1, 2, 3} both methods give, with k′ = {2, 3, 5}
function values, exact results for f ∈ Pk′ .

This equivalence can also be proved by the following argument. By Corollary 3.3.8,
there is only one linear combination of the values of the function f at n + 1 given points
that can yield

∫ b

a
f (x) dx exactly for all polynomials f ∈ Pn+1. It follows that the methods

of Cotes and Romberg for Tkk are identical for k = 1, 2, 3.
For k > 3 the methods are not identical. For k = 4 (9 function values), Cotes is

exact in P10, while T44 is exact in P8. For k = 5 (17 function values), Cotes is exact in
P18, while T55 is exact in P10. This sounds like an advantage for Cotes, but one has to be
sceptical about formulas that use equidistant points in polynomial approximation of very
high degree; see the discussion of Runge’s phenomena in Chapter 4.

Note that the remainder of T44 is

r4h
8(b − a)f (8)(ξ) ≈ r4(b − a)48f (a), r4 = 16/4725,

where 48f (a) uses the same function values as T44 and C8. So we can use r4(b−a)48f (a)

as an asymptotically correct error estimate for T44.

We have assumed so far that the integrand is a real function f ∈ C2m+2[a, b]. For
example, if the integrand f (x) has an algebraic endpoint singularity,

f (x) = xβh(x), −1 < β ≤ 0,

where h(x) ∈ Cp+1[a, b], this assumption is not valid. In this case an asymptotic error
expansion of the form

T (h)− I =
n∑

q=1

aqh
q+β +

q∑
q=2

bqh
q +O(hq+1) (5.2.11)

can be shown to hold for a trapezoidal sum. Similar but more complicated expansions can
be obtained for other classes of singularities. Ifp = −1/2, then T (h) has an error expansion
in h1/2:

T (h)− I = a1h
3/2 + b2h

2 + a2h
5/2 + b3h

3 + a3h
5/2 + · · · .
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Richardson extrapolation can then be used with the denominators

2pj − 1, pj = 1.5, 2, 2.5, 3, . . . .

Clearly the convergence acceleration will be much less effective than in the standard
Romberg case.

In Richardson extrapolation schemes the exponents in the asymptotic error expansions
have to be known explicitly. In cases when the exponents are unknown a nonlinear extrapola-
tion scheme like the ε algorithm should be used. In this a two-dimensional array of numbers
ε
(p)

k , initialized with the trapezoidal approximations Tm = T (hm), hm = (b − a)/2m, is
computed by the recurrence relation

ε
(m)
−1 = 0, m = 1 : n− 1, . . . ,

ε
(m)
0 = Tm, m = 0 : n,
ε
(m)
k+1 = ε

(m+1)
k−1 + 1

ε
(m+1)
k − ε

(m)
k

, k = 0 : n− 2, m = 0 : n− k − 1.

Example 5.2.3.
Accelerating the sequence of trapezoidal sums using the epsilon algorithm may work

when Romberg’s method fails. In the integral

∫ 1

0

√
x dx = 2/3,

the integrand has a singularity at the left endpoint.
Using the trapezoidal rule with 2k + 1 points, k = 0 : 9, the error is divided roughly

by 2
√

2 ≈ 2.828 when the step size is halved. For k = 9 we get he approximation
I ≈ 0.66664 88815 with an error 0.18 · 10−4.

Applying the ε algorithm to these trapezoidal sums, we obtained the accelerated values
displayed in the table below. (Recall that the quantities in odd-numbered columns are only
intermediate quantities.) The magnitude of the error in ε

(1)
8 is close to full IEEE double

precision. Note that we did not use any a priori knowledge of the error expansion.

k ε
(9−2k)
2k Error

0 0.66664 88815 4995 −0.1779 · 10−4

1 0.66666 67335 1817 0.6685 · 10−7

2 0.66666 66666 6037 −0.6292 · 10−11

3 0.66666 66666 6669 0.268 · 10−13

4 0.66666 66666 6666 −0.044 · 10−13

An application of the epsilon algorithm to computing the integral of an oscillating
integrand to high precision is given in Example 5.2.5.
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5.2.3 Oscillating Integrands

Highly oscillating integrals of the form

I [f ] =
∫ b

a

f (x)eiωg(x) dx, (5.2.12)

where f (x) is a slowly varying function and eiωg(x) is oscillating, frequently occur in
applications from electromagnetics, chemistry, fluid mechanics, etc. Such integrals are
allegedly difficult to compute. When a standard numerical quadrature rule is used to compute
(5.2.12), using a step size h such that ωh. 1 is required. For large values of ω this means
an exceedingly small step size and a large number of function evaluations.

Some previously mentioned techniques such as using a simple comparison problem,
or a special integration formula, can be effective also for an oscillating integrand. Consider
the case of a Fourier integral, where g(x) = x, in (5.2.12). The trapezoidal rule gives the
approximation

I [f ] ≈ 1

2
h
(
f0e

iωa + fNe
iωb
)+ h

N−1∑
j=1

fje
iωxj , (5.2.13)

where h = (b − a)/N , xj = a + jh, fj = f (xj ). This formula cannot be used unless
ωh. 1, since its validity is based on the assumption that the whole integrand varies linearly
over an interval of length h.

Abetter method is obtained by approximating just f (x) by a piecewise linear function,

pj (x) = fj + x − xj

h
(fj+1 − fj ), x ∈ [xj , xj+1], j = 0 : N − 1.

The integral over [xj , xj+1] can then be approximated by∫ xj+1

xj

pj (x)e
iωx dx = heiωxj

(
fj

∫ 1

0
eiωht dt + (fj+1 − fj )

∫ 1

0
teiωht dt

)
,

where we have made the change of variables x−xj = th. Let θ = hω be the characteristic
frequency. Then ∫ 1

0
eiθt dt = 1

iθ
(eiθ − 1) = α,

and using integration by parts∫ 1

0
teiθt dt = 1

iθ
teiθt

∣∣∣∣1
0

− 1

iθ

∫ 1

0
eiθt dt = 1

iθ
eiθ + 1

θ2
(eiθ − 1) = β.

Here α and β depend on θ but not on j . Summing the contributions from all intervals we
obtain

h(α − β)

N−1∑
j=0

fje
iωxj + hβ

N−1∑
j=0

fj+1e
iωxj

= h(α − β)

N−1∑
j=0

fje
iωxj + hβe−iθ

N∑
j=1

fje
iωxj .
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The resulting quadrature formula has the same form as (5.2.13),

I [f ] ≈ hw(θ)

N−1∑
j=0

fje
iωxj + hwN(θ)

(
fNe

iωxN − f0e
iωx0
)
, (5.2.14)

with the weights w0(θ) = α − β, wN(θ) = βe−iθ , and w(θ) = w0 + wN . Then

w0(θ) = wN(−θ) = 1− iθ − e−iθ

θ2
, w(θ) = (sin 1

2θ)
2

( 1
2θ)

2
. (5.2.15)

Note that the same trigonometric sum is involved, now multiplied with the real factor w(θ).
The sum in (5.2.14) can be computed using the FFT; see Sec. 4.7.3.

The weights tend to the trapezoidal weights when ωh → 0 (check this!). For small
values of |θ | there will be cancellation in these expressions for the coefficients and the Taylor
expansions should be used instead; see Problem 5.2.11.

A similar approach for computing trigonometric integrals of one of the forms∫ b

a

f (x) cos(ωx) dx,
∫ b

a

f (x) sin(ωx) dx (5.2.16)

was advanced by Filon [116] already in 1928. In this the interval [a, b] is divided into an
even number of 2N subintervals of equal length h = (b − a)/(2N). The function f (x)

is approximated over each double interval [x2i , x2(i+1)] by the quadratic polynomial pi(x)

interpolating f (x) at x2i , x2i+1, and x2(i+1). Filon’s formula is thus related to Simpson’s
rule. (The formula (5.2.14) is often called the Filon-trapezoidal rule.) For ω = 0, Filon’s
formula reduces to the composite Simpson’s formula, but it is not exact for cubic functions
f (x) when ω �= 0.

The integrals∫ x2(i+1)

x2i

pi(x) cos(ωx) dx,
∫ x2(i+1)

x2i

pi(x) sin(ωx) dx

can be computed analytically using integration by parts. This leads to Filon’s integration
formula; see the Handbook [1, Sec. 25.4.47].

Similar formulas can be developed by using different polynomial approximations of
f (x). Einarsson [103] uses a cubic spline approximation of f (x) and assumes that the first
and second derivatives of f at the boundary are available. The resulting quadrature formula
has an error which usually is about four times smaller than that for Filon’s rule.

Using the Euler–Maclaurin formula on the function it can be shown (see Einars-
son [104, 105]) that the expansion of the error for the Filon-trapezoidal rule, the Filon–
Simpson method, and the cubic spline method contain only even powers of h. Thus the
accuracy can be improved by repeated Richardson extrapolation. For example, if the Filon-
trapezoidal rule is used with a sequence of step sizes h, h/2, h/4, . . . , then one can proceed
as in Romberg’s method. Note that the result after one extrapolation is not exactly equal to
the Filon–Simpson rule, but gives a marginally better result when ωh = O(1).
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Example 5.2.4 (Einarsson [104]).
Using the standard trapezoidal rule to compute the Fourier integral

I =
∫ ∞

0
e−x cosωx dx = 1

1+ ω2

gives the result

IT = h

1

2
+


∞∑
j=1

e−jheihωj
 = h

2

sinh h

cosh h− cosh hω
,

where h is the step length. Assuming that hω is sufficiently small we can expand the
right-hand side in powers of h, obtaining

IT = I

(
1+ h2

12
(1+ ω2)+ h4

720
(1+ ω2)(3ω2 − 1)+O(h6)

)
.

For the Filon-trapezoidal rule the corresponding result is

IFT =
(

sin 1
2ωh

1
2ωh

)2

IT = I

(
1+ h2

12
− h4

720
(3ω2 + 1)+O(h6)

)
.

For small values of ω the two formulas are seen to be equivalent. However, for larger values
of ω, the error in the standard trapezoidal rule increases rapidly.

The expansions only have even powers of h. After one step of extrapolation the
Filon-trapezoidal rule gives a relative error equal to h4(3ω2 + 1)/180, which can be shown
to be slightly better than for the Filon–Simpson rule.

More general Filon-type methods can be developed as follows. Suppose we wish to
approximate the integral

I [f ] =
∫ h

0
f (x)eiωx dx = h

∫ 1

0
f (ht)eihωt dt, (5.2.17)

where f is itself sufficiently smooth. We choose distinct nodes 0 ≤ c1 < c2 < · · · < cν ≤ 1
and consider the quadrature formula interpolatory weights b1, b2, . . . , bν . Let s be the largest
integer j so that ∫ 1

0
t j−1γ (t) dt = 0, γ (t) =

ν∏
i=1

(t − ci). (5.2.18)

Then by Theorem 5.1.3, s ≤ ν, and the order of the corresponding quadrature formula
is p = ν + s. A Filon-type quadrature rule is now obtained by interpolating f by the
polynomial

p(x) =
ν∑

k=1

Wk(x/h)f (ckh),
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where Wk is the kth cardinal polynomial of Lagrange interpolation. Replacing f by p in
(5.2.17), we obtain

Qh[f ] =
ν∑

k=1

βk(θ)f (ckh), βk(θ) =
∫ 1

0
Wk(t)e

ihωt dt. (5.2.19)

The coefficients βk(θ) can be computed also from the moments

µk(θ) =
∫ 1

0
tkeiθt dt, k = 0 : ν − 1,

by solving the Vandermonde system

ν∑
j=1

βj (θ)c
k
j = µk(θ), k = 0 : ν − 1.

The derivation of the Filon-type quadrature rule is analogous to considering eiθt as
a complex-valued weight function. However, any attempt to choose the nodes cj so that
the order of the integration rule is increased over ν is likely to lead to complex nodes and
useless formulas.

The general behavior of Filon-type quadrature rules is that for 0 < θ . 1 they show
similar accuracy to the corresponding standard interpolatory rule. For θ = O(1) they are
also very effective, although having order ν ≤ p. The common wisdom is that if used in the
region where θ is large they can give large errors. However, Einarsson [104] observed that
the cubic spline method gives surprisingly good results also for large values of θ , seemingly
in contradiction to the condition in the sampling theorem that at least two nodes per full
period are needed.

Iserles [205] shows that once appropriate Filon-type methods are used the problem
of highly oscillatory quadrature becomes relatively simple. Indeed, the precision of the
calculation actually increases as the oscillation grows. This is quantified in the following
theorem.

Theorem 5.2.2 (Iserles [205, Theorem 2]).
Let θ = hω be the characteristic frequency. Then the error Eh[f ] in the Filon-type

quadrature formula (5.2.19) is

Eh[f ] ∼ O(hν+1θ−p), (5.2.20)

where p = 2 if c1 = 0 and cν = 0; p = 1 otherwise.

To get the best error decay the quadrature formula should include the points c1 = 0
and cν = 1. This is the case both for the Filon-trapezoidal method and the Filon–Simpson
rule. Figure 5.2.1 shows the absolute value of the integral

I =
∫ h

0
exeiωx dx = (e(1+iω)h − 1)/(1+ iω),
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Figure 5.2.1. The Filon-trapezoidal rule applied to the Fourier integral with
f (x) = ex , for h = 1/10, and ω = 1 : 1000; solid line: exact integral; dashed line:
absolute value of the error.

and the absolute value of the error in the Filon-trapezoidal approximation for h = 0.1 and
ω = 1 : 1000. Clearly the error is small and becomes smaller as the characteristic frequency
grows!

Sometimes convergence acceleration of a related series can be successfully employed
for the evaluation of an integral with an oscillating integrand. Assume that the integral has
the form

I [f ] =
∫ ∞

0
f (x) sin(g(x)) dx,

where g(x) is an increasing function and both f (x) and g(x) can be approximated by a
polynomial. Set

I [f ] =
∞∑
n=0

(−1)Nun, un =
∫ xn+1

xn

f (x) |sin(g(x))| dx,

where x0, x1, x2, . . . are the successive zeros of sin(g(x)). The convergence of this al-
ternating series can then be improved with the help of repeated averaging; see Sec. 3.4.3.
Alternatively a sequence of partial sums can be computed, which then is accelerated by the
epsilon algorithm. Sidi [316] has developed a useful extrapolation method for oscillatory
integrals over an infinite interval.

Example 5.2.5 (Gautschi [146]).
The first problem in “The 100-digit Challenge”174 is to compute the integral

I = lim
ε→0

∫ 1

ε

t−1 cos(t−1 ln t) dt (5.2.21)

174See [40] and www.siam.org/books/100digitchallenge.
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to ten decimal places. Since the integrand is densely oscillating as t ↓ 0 and at the same time
the oscillations tend to infinity (see Figure 5.2.2), this is a challenging integral to compute
numerically. (Even so the problem has been solved to an accuracy of 10,000 digits!)
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Figure 5.2.2. The oscillating function x−1 cos(x−1 ln x).

With the change of variables u = t−1, du = −t−2dt , we get

I =
∫ ∞

1
u−1 cos(u ln u) du. (5.2.22)

Making the further change of variables x(u) = u ln u, we have dx = (1 + ln u)du =
(u+ x)u−1du, and the integral becomes

I =
∫ ∞

0

cos x

x + u(x)
dx. (5.2.23)

The inverse functionu(x) is smooth and relatively slowly varying, withu(0) = 1, u′(0) = 1.
For x > 0, u′(x) is positive and decreasing, while u′′(x) is negative and decreasing in
absolute value. The function u(x) is related to Lambert’s W -function, which is the inverse
of the function x = wew (see Problem 3.1.12). Clearly u(x) = ew(x).

The zeros of the integrand in (5.2.23) are at odd multiples of π/2. We split the interval
of integration into intervals of constant sign for the integrand

I =
∫ π/2

0

cos x

x + u(x)
dx +

∞∑
k=1

Ik, Ik =
∫ (2k+1)π/2

(2k−1)π/2

cos x

x + u(x)
dx.

Changing variables x = t + kπ in the integrals Ik ,

Ik = (−1)k
∫ π/2

−π/2

cos t

t + kπ + u(t + kπ)
dt. (5.2.24)
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The terms form an alternating series with terms decreasing in absolute values. It is, however,
slowly converging and for an error bound of 1

2 10−5 about 116,000 terms would be needed.
Accelerating the convergence using the epsilon algorithm, Gautschi found that using only
21 terms in the series suffices to give an accuracy of about 15 decimal digits:

I = 0.32336 74316 77779.

The integrand in the integrals (5.2.24) is regular and smooth. For computing these,
for example, a Clenshaw–Curtis quadrature rule can be used after shifting the interval of
integration to [−1, 1]; see also Problem 5.3.11.

5.2.4 Adaptive Quadrature

Suppose the integrand f (x) (or some of its low-order derivatives) has strongly varying
orders of magnitude in different parts of the interval of integration [a, b]. Clearly, one
should then use different step sizes in different parts of the integration interval. If we write∫ b

a

=
∫ c1

a

+
∫ c2

c1

+ · · · +
∫ b

c1

,

then the integrals on the right-hand side can be treated as independent subproblems. In adap-
tive quadrature methods step sizes are automatically adjusted so that the approximation
satisfies a prescribed error tolerance:∣∣∣I − ∫ b

a

f (x) dx

∣∣∣ ≤ ε. (5.2.25)

A common difficulty is when the integrand exhibits one or several sharp peaks as
exemplified in Figure 5.2.3. It should be realized that without further information about the
location of the peaks all quadrature algorithms can fail if the peaks are sharp enough.

We consider first a fixed-order adaptive method based on Simpson’s rule. For a
subinterval [a, b], set h = (b − a) and compute the trapezoidal approximations

T00 = T (h), T10 = T (h/2), T20 = T (h/4).

The extrapolated values

T11 = (4T10 − T00)/3, T21 = (4T20 − T10)/3

are equivalent to (the composite) Simpson’s rule with step length h/2 and h/4, respectively.
We can also calculate

T22 = (16T21 − T11)/15,

which is Milne’s method with step length h/4 with remainder equal to

(2/945)(h/4)6(b − a)f (6)(ξ).
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Figure 5.2.3. A needle-shaped function.

For T22 we can estimate the truncation error by |T22 − T21|, which is usually a strong
overestimate. We accept the approximation if

|T22 − T21| < hjε

b − a
, (5.2.26)

i.e., we require the error to be less than ε/(b − a) per unit step. Otherwise we reject the
approximation, and subdivide the interval in two intervals, [aj , 1

2 (aj+bj )], [ 1
2 (aj+bj ), bj ].

The same rule is now applied to these two subintervals.
Note that if the function values computed previously are saved, these can be reused

for the new intervals. We start with one interval [a, b] and carry on subdivisions until the
error criterion in (5.2.26) is satisfied for all intervals. Since the total error is the sum of
errors for all subintervals, we then have the required error estimate:

RT <
∑
j

hj ε

b − a
= ε.

The possibility that a user might try to integrate a nonintegrable function (e.g., f (x) =
x−1 on [0, 1]) cannot be neglected. In principle it is not possible to decide whether a
function f (x) is integrable on the basis of a finite sample f (x1), . . . , f (xn) of function
values. Therefore, it is necessary to impose

1. an upper limit on the number of function evaluation,

2. a lower limit on the size of the subregions.

This means that premature termination may occur even when the function is only close to
being nonintegrable, for example, f (x) = x−0.99.

Many different adaptive quadrature schemes exist. Here we shall illustrate one simple
scheme based on a five-point closed Newton–Cotes’ rule, which applies bisection in a
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locally adaptive strategy. All function evaluations contribute to the final estimate. In many
situations it might be preferable to specify a relative error tolerance:

tol = η

∣∣∣∫ b

a

f (x) dx

∣∣∣.
A more complete discussion of the choice of termination criteria in adaptive algorithms is
found in Gander and Gautschi [128].

Algorithm 5.3. Adaptive Simpson.

Let f be a given function to be integrated over [a, b]. The function adaptsimp uses a
recursive algorithm to compute an approximation with an error less than a specified tolerance
τ > 0.

function [I,nf] = adaptsimp(f,a,b,tol);
% ADAPTSIMP calls the recursive function ADAPTREC to compute
% the integral of the vector-valued function f over [a,b];
% tol is the desired absolute accuracy; nf is the number of
% function evaluations.
%
ff = feval(f,[a, (a+b)/2, b]);
nf = 3; % Initial Simpson approximation
I1 = (b - a)*[1, 4, 1]*ff’/6;
% Recursive computation
[I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);

function [I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);
h = (b - a)/2;
fm = feval(f, [a + h/2, b - h/2]);
nf = nf + 2;
% Simpson approximations for left and right subinterval
fR = [ff(2); fm(2); ff(3)];
fL = [ff(1); fm(1); ff(2)];
IL = h*[1, 4, 1]*fL/6;
IR = h*[1, 4, 1]*fR/6;
I2 = IL + IR;
I = I2 + (I2 - I1)/15; % Extrapolated approximation
if abs(I - I2) > tol % Refine both subintervals

[IL,nf] = adaptrec(f,a,a+h,fL,IL,tol/2,nf);
[IR,nf] = adaptrec(f,b-h,b,fR,IR,tol/2,nf);
I = IL + IR;

end

Note that in a locally adaptive algorithm using a recursive partitioning scheme, the
subintervals are processed from left to right until the integral over each subinterval satisfies
some error requirement. This means that an a priori initial estimate of the whole integral,
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needed for use in a relative local error estimate cannot be updated until all subintervals are
processed and the computation is finished. Hence, if a relative tolerance is specified, then
an estimate of the integral is needed before the recursion starts. This is complicated by the
fact that the initial estimate might be zero, for example, if a periodic integrand is sampled
at equidistant intervals. Hence a combination of relative and absolute criteria might be
preferable.

Example 5.2.6.
This algorithm was used to compute the integral∫ 4

−4

dx

1+ x2
= 2.65163532733607

with an absolute tolerance 10−p, p = 4, 5, 6. The following approximations were obtained.

I tol n Error

2.65162 50211 10−4 41 1.0 10−5

2.65163 52064 10−5 81 1.2 10−7

2.65163 5327353 10−6 153 −1.7 10−11

Note that the actual error is much smaller than the required tolerance.

So far we have considered adaptive routines, which use fixed quadrature rules on
each subinterval but where the partition of the interval depends on the integrand. Such
an algorithm is said to be partition adaptive. We can also consider doubly adaptive
integration algorithms. These can choose from a sequence of increasingly higher-order
rules to be applied to the current subinterval. Such algorithms use a selection criterion to
decide at each stage whether to subdivide the current subinterval or to apply a higher-order
rule. Doubly adaptive routines cope more efficiently with smooth integrands.

Many variations on the simple scheme outlined above are possible. For example,
we could base the method on a higher-order Romberg scheme, or even try to choose an
optimal order for each subinterval. Adaptive methods work even when the integrand f (x)

is badly behaved. But if f has singularities or unbounded derivatives, the error criterion
may never be satisfied. To guard against such cases it is necessary to include some bound
of the number of recursion levels that are allowed. It should be kept in mind that although
adaptive quadrature algorithms are convenient to use they are in general less efficient than
methods which have been specially adapted for a particular problem.

We finally warn the reader that no automatic quadrature routine can always be guar-
anteed to work. Indeed, any estimate of

∫ b

a
f (x) dx based solely on the value of f (x) on

finitely many points can fail. The integrand f (x) may, for example, be nonzero only on a
small subset of [a, b]. An adaptive quadrature rule based only on samples f (x) in a finite
number of points theoretically may return the value zero in such a case!

We recall the remark that evaluation of the integral
∫ b

a
f (x) dx is equivalent to solving

an initial value problem y ′ = f (x), y(a) = 0, for an ordinary differential equation. For
such problems sophisticated techniques for adaptively choosing step size and order in the
integration have been developed. These may be a good alternative choice for handling
difficult cases.
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Review Questions
5.2.1 (a) Give an account of the theoretical background of Romberg’s method.

(b) For which values of k are the elements Tkk in the Romberg scheme identical to
closed Newton–Cotes’ formulas?

5.2.2 Romberg’s method uses extrapolation of a sequence of trapezoidal approximations
computed for a sequence of step sizes h0, h1, h2, . . . . What sequences have been
suggested and what are their relative merits?

5.2.3 When the integrand has a singularity at one of the endpoints, many quadrature methods
converge very slowly. Name a few possible ways to resolve this problem.

5.2.4 Romberg’s method works only when the error of the trapezoidal rule has an expansion
in even powers of h. If this is not the case, what other extrapolations methods should
be tried?

5.2.5 Describe at least two methods for treating an integral with an oscillating integrand.

5.2.6 In partition adaptive quadrature methods the step sizes are locally adopted. Discuss
how the division into subintervals can be controlled.

Problems and Computer Exercises
5.2.1 Is it true that (the short version of) Simpson’s formula is a particular case of Gregory’s

formula?

5.2.2 Use Romberg’s method to compute the integral
∫ 4

0 f (x) dx, using the following (cor-
rectly rounded) values of f (x). Need all the values be used?

x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
f (x) −4271 −2522 −499 1795 4358 7187 10,279 13,633 17,247

5.2.3 (a) Suppose that the form of the error of Romberg’s method is known, but not the
error constant rk . Determine rk numerically for k = 3 and k = 4, by computing the
Romberg scheme for f (x) = x2k .

(b) Prove the formula for the error constant of Romberg’s method.

5.2.4 Compute by the Euler–Maclaurin formula, or rather the composite trapezoidal rule,

(a)
∫ ∞

0
e−x

2/2dx, (b)
∫ ∞

0

dx

cosh(πx)

as accurately as you can with the normal precision of your computer (or software).
Then find out empirically how the error depends on h. Make semilogarithmic plots
on the same screen. How long a range of integration do you need?

5.2.5 (a) Use Romberg’s method and Aitken acceleration to compute the integral

I [f ] =
∫ ∞

1

1

1+ x2
dx =

∫ 2

1
+
∫ 4

2
+
∫ 8

4
+ · · · .
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Determine where to terminate the expansion, and then use Aitken acceleration to find
I [f ]. Compare with the exact result. Think of an error estimate that can be used if
the exact result is not known.

(b) Treat in the same way ∫ ∞

1

1√
x + x3

.

Compare the computational effort for the computation of the tail
∫∞
R

by acceleration
and by series expansion with the same accuracy.

5.2.6 Modify the MATLAB function romberg so that it uses rational extrapolation ac-
cording to the recursion (5.2.7) instead of polynomial extrapolation. Use the modified
program to compute the integral in Example 5.2.2. Compare the results for the two
different extrapolation methods.

5.2.7 Apply the MATLAB program romberg in Sec. 5.2.2 and repeated averages on the
integral ∫ 1000

0
x cos(x3) dx.

Try to obtain the results with 10 decimal places.

5.2.8 (a) Show the following series expansions for the coefficients in the Filon-trapezoidal
formula:

w0(θ) = wN(−θ) = 1

2
− θ2

24
+ θ4

720
− · · · + i

(θ
6
− θ3

120
+ θ5

5040
− · · ·

)
,

w(θ) = w0(θ)+ wN(−θ) = 1− θ2

12
+ θ4

360
− · · · .

(b) For what value of θ should you switch to using the series expansions above, if
you want to minimize an upper bound for the error in the coefficients?

5.3 Quadrature Rules with Free Nodes

5.3.1 Method of Undetermined Coefficients

We have previously seen how to derive quadrature rules using Lagrange interpolation or
operator series. We now outline another general technique, the method of undetermined
coefficients, for determining quadrature formulas of maximum order with both free and
prescribed nodes.

Let L be a linear functional and consider approximation formulas of the form

Lf ≈ L̃f =
p∑

i=1

aif (xi)+
q∑

j=1

bjf (zj ), (5.3.1)

where the xi arep given nodes, while the zj are q free nodes. The latter are to be determined
together with the weight factors ai , bj . The altogether p + 2q parameters in the formula
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are to be determined, if possible, so that the formula becomes exact for all polynomials of
degree less than N = p + 2q. We introduce the two node polynomials

r(x) = (x − x1) · · · (x − xp), s(x) = (x − z1) · · · (x − zq) (5.3.2)

of degree p and q, respectively.
Let φ1, φ2, . . . , φN be a basis of the space of polynomials of degree less than N . We

assume that the quantities Lφk , k = 1 : p + 2q are known. Then we obtain the nonlinear
system

p∑
i=1

φk(xi)ai +
q∑

j=1

φk(zj )bj = Lφk, k = 1, 2, . . . , p + 2q, (5.3.3)

for the p + 2q parameters. This system is nonlinear in zj , but of a very special type.
Note that the free nodes zj appear in a symmetric fashion; the system (5.3.3) is invariant
with respect to permutations of the free nodes together with their weights. We therefore
first ask for their elementary symmetric functions, i.e., for the coefficients gj of the node
polynomial

s(x) = φq+1(x)−
q∑

j=1

gjφj (x) (5.3.4)

that has the free nodes z1, . . . , zq as zeros. We change the basis to the set

φ1(x), . . . , φq(x), s(x)φ1(x), . . . , s(x)φp+q(x).

In the system (5.3.3), the equations for k = 1 : q will not be changed, but the equations for
k = 1+ q : p + 2q become

p∑
i=1

φk′(xi)s(xi)ai +
q∑

j=1

φk′(zj )s(zj )bj = L(sφk′), 1 ≤ k′ ≤ p + q. (5.3.5)

Here the second sum disappears since s(zj ) = 0 for all j . (This is the nice feature of this
treatment.) Further, by (5.3.4),

L(sφk′) = L(φk′φq+1)−
q∑

j=1

L(φk′φj )gj , 1 ≤ k′ ≤ p + q. (5.3.6)

We thus obtain the following linear system for the computation of the p+ q quantities, gj ,
and Ai = s(xi)ai :

q∑
j=1

L(φk′φj )gj +
p∑

i=1

φk′(xi)Ai = L(φk′φq+1), k′ = 1 : p + q. (5.3.7)

The weights of the fixed nodes are ai = Ai/s(xi). The free nodes zj are then determined by
finding the q roots of the polynomial s(x). Methods for computing roots of a polynomial
are given in Sec. 6.5. Finally, with ai and zj known, the weights bj are obtained by the
solution of the first q equations of the system (5.3.3) which are linear in bj .
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The remainder term Rf = (Lf − L̃f ) of the method, exact for all polynomials of
degree less than N = p + 2q, is of the form

Rf = R(f − PN) ≈ cNf
(N)(ξ), cN = R(xN)/N !,

where cN is called the error constant. Note that R(xN) = R(φN+1), where φ(N+1) is any
monic polynomial of degree N , since xN − φ(N+1) is a polynomial of degree less than N .
Hence, for the determination of the error constant we compute the difference between the
right-hand and the left-hand sides of

p∑
i=1

φk(xi) ai +
q∑

j=1

φk(zj ) bj +N !cN = LφN+1, N = p + 2q, (5.3.8)

and divide by (N)!. If, for example, a certain kind of symmetry is present, then it can
happen that cp+2q = 0. The formula is then more accurate than expected, and we take
N = p + 2q + 1 instead. The case that also cp+2q+1 = 0 may usually be ignored. It can
occur if several of the given nodes are located, where free nodes would have been placed.

From a pure mathematical point of view all bases are equivalent, but equation (5.3.3)
may be better conditioned with some bases than with others, and this turns out to be an
important issue when p + 2q is large. We mention three different situations.

(i) The most straightforward choice is to set [a, b] = [0, 1] and use the monomial basis
φk(x) = xk−1, x ∈ (0, b) (b may be infinite). For this choice the condition number of
(5.3.3) increases exponentially with p + 2q. Then the free nodes and corresponding
weights may become rather inaccurate when p + 2q is large. It is usually found,
however, that unless the condition number is so big that the solution breaks down
completely, the computed solution will satisfy equation (5.3.3) with a small residual.
This is what really matters for the application of formula (5.3.1).

(ii) Take [a, b] = [−1, 1], and assume that the weight function w(x) and the given nodes
xi are symmetrical with respect to the origin. Then the weights ai and bi , and the free
nodes zj will also be symmetrically located, and with the monomial basis it holds that
L(φk(x)) = 0, when k is even. If p = 2p′ is even, the number of parameters will be
reduced to p′ + q by the transformation x = √

ξ, ξ ∈ [0, b2]. Note that w(x) will be
replaced by w(

√
ξ)/
√
ξ . If p is odd, one node is at the origin, and one can proceed

in an analogous way. This should also reduce the condition number approximately to
its square root, and it is possible to derive in a numerically stable way formulas with
about twice as high an order of accuracy as in the unsymmetric case.

(iii) Taking φk to be the orthogonal polynomials for the given weight function will give
a much better conditioned system for determining the weights. This case will be
considered in detail in Sec. 5.3.5.

Example 5.3.1.
Consider the linear functional L(f ) = ∫ 1

0 f (x) dx. Set p = 0, q = 3 and choose the
monomial basis φi(x) = xi−1. Introducing the node polynomial

s(x) = (x − z1)(x − z2)(x − z3) = x3 − s3x
2 − s2x − s1,
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the linear system (5.3.6) becomes( 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

)(
s1

s2

s3

)
=
( 1/4

1/5
1/6

)
.

The exact solution is s1 = 1/20, s2 = −3/5, and s3 = 3/2. The free nodes thus are the
zeros of s(x) = x3 − 3x2/2+ 3x/5− 1/20, which are z2 = 1/2 and z1,3 = 1/2±√3/20.
The weights b1, b2, b3 are then found by solving (5.3.3) for k = 1 : 3.

The matrix of the above system is a Hankel matrix. The reader should verify that when
p > 0 the matrix becomes a kind of combination of a Hankel matrix and a Vandermonde
matrix.

5.3.2 Gauss–Christoffel Quadrature Rules

Assume that the n nodes in a quadrature formula are chosen so that

(f, s) =
∫ b

a

p(x)s(x)w(x) dx = 0 ∀ p(x) ∈ Pn, (5.3.9)

where s(x) = (x−x1)(x−x2) · · · (x−xn) is the node polynomial. Then, by Theorem 5.1.3,
the corresponding interpolatory quadrature rule will have the maximum possible order
2n− 1.

We define an inner product with respect to a weight function w(x) ≥ 0 by

(f, g) =
∫ b

a

f (x)g(x)w(x) dx, (5.3.10)

and assume that the moments

µk = (xk, 1) =
∫ b

a

xkw(x) dx (5.3.11)

are defined for all k ≥ 0, and µ0 > 0. This inner product has the important property that
(xf, g) = (f, xg). The condition (5.3.9) on the node polynomial can then be interpreted to
mean that s(x) is orthogonal to all polynomials in Pn.

For the weight function w(x) ≡ 1 the corresponding quadrature rules were derived in
1814 by Gauss [133]. Formulas for more general weight functions were given by Christof-
fel [68] in 1858,175 which is why these are referred to as Gauss–Christoffel quadrature
rules.

The construction of Gauss–Christoffel quadrature rules is closely related to the the-
ory of orthogonal polynomials. In Sec. 4.5.5 we showed how the orthogonal polynomials
corresponding to the inner product (5.3.10) could be generated by a three-term recurrence
formula. The zeros of these polynomials are the nodes in a Gauss–Christoffel quadra-
ture formula. As for all interpolatory quadrature rules the weights can be determined by

175Elwin Bruno Christoffel (1829–1900) worked mostly in Strasbourg. He is best known for his work in geometry
and tensor analysis, which Einstein later used in his theory of relativity.
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integrating the elementary Lagrange polynomials (5.1.7)

wi =
∫ b

a

Wi(x)w(x) dx, Wi(x) =
n∏

j=1
j �=i

(x − xj )

(xi − xj )
, i = 1 : n.

In Sec. 5.3.5 we will outline a more stable algorithm that determines the nodes and weights by
solving the eigenvalue problem for a symmetric tridiagonal matrix defined by the coefficients
in the recurrence relation.

We shall now prove some important properties of Gauss–Christoffel quadrature rules
using the general theory of orthogonal polynomials.

Theorem 5.3.1.
The zeros xi , i = 1 : n, of the orthogonal polynomial polynomial ϕn+1(x) of degree

n, associated with the weight function w(x) ≥ 0 on [a, b], are real, distinct, and contained
in the open interval (a, b).

Proof. Let a < x1 < x2 < · · · < xm < b be the roots of ϕn+1(x) of odd multiplicity, which
lie in (a, b). At these roots ϕn+1(x) changes sign and therefore the polynomial q(x)ϕn+1(x),
where

q(x) = (x − x1)(x − x2) · · · (x − xm),

has constant sign in [a, b]. Hence,∫ b

a

ϕn+1q(x)w(x) dx > 0.

But this is possible only if the degree of q(x) is equal to n. Thus m = n and the theorem
follows.

Corollary 5.3.2.
If x1, x2, . . . , xn are chosen as the n distinct zeros of the orthogonal polynomial ϕn+1

of degree n in the family of orthogonal polynomials associated with w(x), then the formula∫ b

a

f (x)w(x) dx ≈
n∑

i=1

wif (xi), wi =
∫ b

a

Wi(x)w(x) dx, (5.3.12)

is exact for polynomials of degree 2n− 1.

Apart from having optimal degree of exactness equal to 2n− 1, Gaussian quadrature
rules have several important properties, which we now outline.

Theorem 5.3.3.
All weights in a Gaussian quadrature rule are real, distinct, and positive.

Proof. Let

Wi(x) =
n∏

j=1
j �=i

(x − xj )

(xi − xj )
, i = 1 : n,
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be the Lagrange polynomials. Then the quadrature formula (5.3.12) is exact for p(x) =
(Wi(x))

2, which is of degree 2(n− 1). Further, Wi(xj ) = 0, j �= i, and therefore∫ b

a

(Wi(x))
2w(x) dx = wi(Wi(xi))

2 = wi.

Since w(x) > 0 it follows that wi > 0.

Gaussian quadrature formulas can also be derived by Hermite interpolation on the
nodes xk , each counted as a double node and requiring that coefficients of the derivative
terms should be zero. This interpretation gives a convenient expression for the error term
in Gaussian quadrature.

Theorem 5.3.4.
The remainder term in Gauss’ quadrature rule (5.3.12) with n nodes is given by the

formula

I [f ] − In(f ) = f (2n)(ξ)

(2n)!
∫ b

a

[
n∏

i=1

(x − xi)

]2

w(x) dx = cnf
(2n)(ξ), a < ξ < b.

(5.3.13)
The constant cn can be determined by applying the formula to some polynomial of degree
2n.

Proof. Denote by q(x) the polynomial of degree 2n− 1 which solves the Hermite interpo-
lation problem (see Sec. 4.3.1)

q(xi) = f (xi), q ′(xi) = f ′(xi), i = 1 : n.
The Gauss quadrature formula is exact for q(x), and hence∫ b

a

q(x)w(x) dx =
n∑

i=1

wiq(xi) =
n∑

i=1

wif (xi).

Thus
n∑

i=1

wif (xi)−
∫ b

a

f (x)w(x) dx =
∫ b

a

(q(x)− f (x))w(x) dx.

Using the remainder term (4.3.4) in Hermite interpolation gives

f (x)− q(x) = f (2n)(ξ)

(2n)! (ϕn(x))
2, ϕn(x) =

n∏
i=1

(x − xi),

and the theorem now follows.

Using Bernštein’s approximation theorem (Theorem 3.2.5) we get the following corol-
lary.
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Corollary 5.3.5.
Let f real-valued for z ∈ [−1, 1], and analytic and single-valued |f (z)| ≤ M in the

region z ∈ ER, R > 1, where

ER = {z : |z− 1| + |z+ 1| ≤ R + R−1},
be an ellipse with foci at 1 and −1. Then the remainder term in a Gauss quadrature rule
with n nodes for the interval [−1, 1] satisfies

|I [f ] − In(f )| ≤ 2Mµ0

1− 1/R
R−2n. (5.3.14)

This shows the rapid convergence of Gauss’ quadrature rules for functions analytic in
a region ER , with R # 1.

We now mention some classical Gauss–Christoffel quadrature rules, which are related
to the orthogonal polynomials surveyed in Sec. 4.5.5. For an integral

∫ 1
−1 f (x) dx, with

uniform weight distributionw(x) = 1, the relevant orthogonal polynomials are the Legendre
polynomials Pn(x).

As a historical aside, Gauss derived his quadrature formula by considering the con-
tinued fraction

1

2

∫ 1

−1

dx

z− x
= 1

2
ln

(
z+ 1

z− 1

)
= 1

z−
1/3

z−
4/(3 · 5)

z−
9/(5 · 7)

z− · · · , (5.3.15)

which he had derived in an earlier paper. The nth convergent of this continued fraction is a
rational function with a numerator of degree n− 1 in z and denominator of degree n which
is the (n − 1, n) Padé approximant to the function. Decomposing this fraction in partial
fractions the residues and the poles can be taken as nodes of a quadrature formula. Using
the accuracy properties of the Padé approximants Gauss showed that the quadrature formula
will have order 2n− 1.

The reciprocal of the denominators’ polynomials Pn(z) = znQn(1/z) are precisely
the Legendre polynomials; see Example 3.5.6. Recall that the monic Legendre polynomials
satisfy the recurrence formula P0 = 1, P1 = x,

Pn+1(x) = xPn(x)− n2

4n2 − 1
Pn−1(x), n ≥ 1.

The first few monic Legendre polynomials are

P2(x) = 1

3
(3x2 − 1), P3(x) = 1

5
(5x3 − 3x),

P4(x) = 1

35
(35x4 − 30x2 + 3), P5(x) = 1

63
(63x5 − 70x3 + 15x), . . . .

Example 5.3.2.
For a two-point Gauss–Legendre quadrature rule the two abscissae are the zeros of

P2(x) = 1
3 (3x

2 − 1), i.e., ±3−1/2. Note that they are symmetric with respect to the origin.
The weights can be determined by application of the formula to f (x) = 1 and f (x) =

x, respectively. This gives

w0 + w1 = 2, −3−1/2w0 + 3−1/2w1 = 0,
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with solution w0 = w1 = 1. Hence the formula∫ 1

−1
f (x) dx ≈ f (−3−1/2)+ f (3−1/2)

is exact for polynomials of degree≤ 3. For a three-point Gauss formula, see Problem 5.3.1.

Abscissae and weights for Gauss formulas using n = m + 1 points, for n = 2 : 10,
with 15 decimal digits and n = 12, 16, 20, 24, 32, 40, 48, 64, 80, and 96 with 20 digits are
tabulated in [1, Table 25.4]; see Table 5.3.1 for a sample. Instead of storing these constants,
it might be preferable to use a program that generates abscissae and weights as needed.

Table 5.3.1. Abscissae and weight factors for some Gauss–Legendre quadrature
from [1, Table 25.4].

xi wi

n = 3
0.00000 00000 00000 0.88888 88888 88889
±0.77459 66692 41483 0.55555 55555 55556

n = 4
±0.33998 10435 84856 0.65214 51548 62546
±0.86113 63115 94053 0.34785 48451 37454

n = 5
0.00000 00000 00000 0.56888 88888 88889
±0.53846 93101 05683 0.47862 86704 99366
±0.90617 98459 38664 0.23692 68850 56189

For the weight function

w(x) = (1− x)α(1+ x)β, x ∈ [−1, 1], α, β > −1,

the nodes are obtained from the zeros of the Jacobi polynomials Jn(x;α, β). In the special
case when α = β = 0 these equal the Legendre polynomials. The case α = β = −1/2,
which corresponds to the weight function w(x) = 1/

√
1− x2, gives the Chebyshev poly-

nomials Tn(x) of the first kind. Similarly, α = β = 1/2 gives the Chebyshev polynomials
Un(x) of the second kind.

If a quadrature rule is given for the standard interval [−1, 1], the corresponding
formula for an integral over the interval [a, b] is obtained by the change of variable t =
1
2 ((b − a)x + (a + b)), which maps the interval [a, b] onto the standard interval [−1, 1]:∫ b

a

f (t)dt = b − a

2

∫ 1

−1
g(x) dx, g(x) = f

(
1

2

(
(b − a)x + (a + b)

))
.

If f (t) is a polynomial, then g(x) will be a polynomial of the same degree, since the
transformation is linear. Hence the order of accuracy of the formula is not affected.
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Two other important cases of Gauss quadrature rules deal with infinite intervals of
integration. The generalized Laguerre polynomials L(α)

n (x) are orthogonal with respect to
the weight function

w(x) = xαe−x, x ∈ [0,∞], α > −1.

Setting α = 0, we get the Laguerre polynomials L(0)
n (x) = Ln(x).

The Hermite polynomials are orthogonal with respect to the weight function

w(x) = e−x
2
, −∞ < x <∞.

Recall that weight functions and recurrence coefficients for the above monic orthogonal
polynomials are given in Table 4.5.1.

Rather little is found in the literature on numerical analysis about densities on infi-
nite intervals, except the classical cases above. It follows from two classical theorems of
Hamburger in 1919 and M. Riesz in 1923 that the system of orthogonal polynomials for the
density w over the infinite interval [−∞,∞] is complete if, for some β > 0,∫ ∞

−∞
eβ|x|w(x) dx <∞;

see Freud [123, Sec. II.4–5]. For densities on [0,∞], x is to be replaced by
√
x in the above

result. (Note that a density function on the positive real x-axis can be mapped into an even
density function on the whole real t-axis by the substitution x = t2.

5.3.3 Gauss Quadrature with Preassigned Nodes

In many applications it is desirable to use Gauss-type quadrature where some nodes are
preassigned and the rest chosen to maximize the order of accuracy. In the most common
cases the preassigned nodes are at the endpoints of the interval. Consider a quadrature rule
of the form ∫ b

a

f (x)w(x) dx =
n∑

i=1

wif (xi)+
m∑

j=1

bjf (zj )+ R(f ), (5.3.16)

where zj , j = 1 : m, are fixed nodes in [a, b] and the xi are determined so that the
interpolatory rule is exact for polynomials of order 2n + m − 1. By a generalization of
Theorem 5.3.4 the remainder term is given by the formula

R(f ) = f (2n+m)(ξ)

(2n)!
∫ b

a

m∏
i=1

(x − zi)
[ n∏
i=1

(x − xi)
]2
w(x) dx, a < ξ < b. (5.3.17)

In Gauss–Lobatto quadrature both endpoints are used as abscissae, z1 = a, z2 = b,
and m = 2. For the standard interval [a, b] = [−1, 1] and the weight function w(x) = 1,
the quadrature formula has the form∫ 1

−1
f (x) dx = w0f (−1)+ wn+1f (1)+

n∑
i=1

wif (xi)+ EL. (5.3.18)
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The abscissae a < xi < b are the zeros of the orthogonal polynomial φn corresponding
to the weight function w̃(x) = (1 − x2), i.e., up to a constant factor equal to the Jacobi
polynomial Jn(x, 1, 1) = P ′

n+1(x). The nodes lie symmetric with respect to the origin. The
corresponding weights satisfy wi = wn+1−i , and are given by

w0 = wn+1 = 2

(n+ 2)(n+ 1)
, wi = w0

(Pn+1(xi))2
, i = 1 : n. (5.3.19)

The Lobatto rule (5.3.18) is exact for polynomials of order 2n+1, and forf (x) ∈ C2m[−1, 1]
the error term is given by

R(f ) = − (n+ 2)(n+ 1)322n+3(n!)4

(2n+ 3)[(2n+ 2)!]3 f (2n+2)(ξ), ξ ∈ (−1, 1). (5.3.20)

Nodes and weights for Lobatto quadrature are found in [1, Table 25.6].
In Gauss–Radau quadrature rules m = 1 and one of the endpoints is taken as the

abscissa, z1 = a or z1 = b. The remainder term (5.3.17) becomes

R(f ) = f (2n+1)(ξ)

(2n)!
∫ b

a

(x − z1)

[
n∏

i=1

(x − xi)

]2

w(x) dx, a < ξ < b. (5.3.21)

Therefore, if the derivative f (n+1)(x) has constant sign in [a, b], then the error in the Gauss–
Radau rule with z1 = b will have opposite sign to the Gauss–Radau rule with z1 = a. Thus,
by evaluating both rules we obtain lower and upper bounds for the true integral. This has
many applications; see Golub [160].

For the standard interval [−1, 1] the Gauss–Radau quadrature formula with z1 = 1
has the form ∫ 1

−1
f (x) dx = w0f (−1)+

n∑
i=1

wif (xi)+ ER1. (5.3.22)

The n free abscissae are the zeros of

Pn(x)+ Pn+1(x)

x − 1
,

where Pm(x) are the Legendre polynomials. The corresponding weights are given by

w0 = 2

(n+ 1)2
, wi = 1

(n+ 1)2

1− xi

(Pn(xi))2
, i = 1 : n. (5.3.23)

The Gauss–Radau quadrature rule is exact for polynomials of order 2n. Iff (x) ∈ C2m−1[−1, 1],
then the error term is given by

ER1(f ) = (n+ 1)22n+1

[(2n+ 1)!]3 (n!)4f (2n+1)(ξ1), ξ1 ∈ (−1, 1). (5.3.24)

Asimilar formula can be obtained with the fixed point+1 by making the substitution t = −x.
By modifying the proof of Theorem 5.3.3 it can be shown that the weights in Gauss–

Radau and Gauss–Lobatto quadrature rules are positive if the weight function w(x) is
nonnegative.
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Example 5.3.3.
The simplest Gauss–Lobatto rule is Simpson’s rule with n = 1 interior node. Taking

n = 2 the interior nodes are the zeros of φ2(x), where∫ 1

−1
(1− x2)φ2(x)p(x) dx = 0 ∀p ∈ P2.

Thus, φ2 is, up to a constant factor, the Jacobi polynomial J2(x, 1, 1) = (x2 − 1/5). Hence
the interior nodes are ±1/

√
5 and by symmetry the quadrature formula is∫ 1

−1
f (x) dx = w0(f (−1)+ f (1))+ w1(f (−1/

√
5)+ f (1/

√
5))+ R(f ), (5.3.25)

where R(f ) = 0 for f ∈ P6. The weights are determined by exactness for f (x) = 1 and
f (x) = x2. This gives 2w0 + 2w1 = 2, 2w0 + (2/5)w1 = 2

3 , i.e., w0 = 1
6 , w1 = 5

6 .

A serious drawback with Gaussian rules is that as we increase the order of the formula,
all interior abscissae change, except that at the origin. Thus function values computed for
the lower-order formula are not used in the new formula. This is in contrast to Romberg’s
method and Clenshaw–Curtis quadrature rules, where all old function values are used also
in the new rule when the number of points is doubled.

Let Gn be an n-point Gaussian quadrature rule∫ b

a

f (x)w(x) dx ≈
n−1∑
i=0

aif (xi),

where xi , i = 0 : n − 1, are the zeros of the nth degree orthogonal polynomial πn(x).
Kronrod [227, 228] considered extending Gn by finding a new quadrature rule

K2n+1 =
n−1∑
i=0

aif (xi)+
n∑

i=0

bif (yi), (5.3.26)

where the new n+ 1 abscissae yi are chosen such that the degree of the rule K2n+1 is equal
to 3n+ 1. The new nodes yi should then be selected as the zeros of a polynomial pn+1(x)

of degree n+ 1, satisfying the orthogonality conditions∫ b

a

πn(x)pn+1(x)w(x) dx = 0. (5.3.27)

If the zeros are real and contained in the closed interval of integration [a, b] such a rule is
called a Kronrod extension of the Gaussian rule. The two rules (Gn,K2n+1) are called a
Gauss–Kronrod pair. Note that the number of new function evaluations are the same as
for the Gauss rule Gn+1.

It has been proved that a Kronrod extension exists for the weight function w(x) =
(1 − x2)λ−1/2, λ ∈ [0, 2], and [a, b] = [−1, 1]. For this weight function the new nodes
interlace the original Gaussian nodes, i.e.,

−1 ≤ y0 < x0 < y1 < x1 < y2 < · · · < xn−1 < yn < 1.
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This interlacing property can be shown to imply that all weights are positive. Kronrod
considered extensions of Gauss–Legendre rules, i.e.,w(x) = 1, and gives nodes and weights
in [228] for n ≤ 40.

It is not always the case that all weights are positive. For example, it has been
shown that Kronrod extensions of Gauss–Laguerre and Gauss–Hermite quadrature rules
with positive weights do not exist when n > 0 in the Laguerre case and n = 3 and n > 4 in
the Hermite case. On the other hand, the Kronrod extensions of Gauss–Legendre rules can
be shown to exist and have positive weights.

Gauss–Kronrod rules are one of most effective methods for calculating integrals.
Often one takes n = 7 and uses the Gauss–Kronrod pair (G7,K15), together with the
realistic but still conservative error estimate (200|Gn−K2n+1|)1.5; see Kahaner, Moler, and
Nash [215, Sec. 5.5].

Kronrod extension of Gauss–Radau and Gauss–Lobatto rules can also be constructed.
Kronrod extension of the Lobatto rule (5.3.25) is given by Gander and Gautschi [128] and
used in an adaptive Lobatto quadrature algorithm. The simplest extension is the four-point
Lobatto–Kronrod rule∫ 1

−1
f (x) dx = 11

210
(f (−1)+ f (1))+ 72

245

(
f

(
−
√

2

3

)
+ f

(√
2

3

))

+ 125

294

(
f

(
− 1√

5

)
+ f

(
1√
5

))
+ 16

35
f (0))+ R(f ). (5.3.28)

This rule is exact for all f ∈ P10. Note that the Kronrod points ±√2/3 and 0 interlace the
previous nodes.

5.3.4 Matrices, Moments, and Gauss Quadrature

We first collect some classical results of Gauss, Christoffel, Chebyshev, Stieltjes, and others,
with a few modern aspects and notations appropriate for our purpose.

Let {p1, p2, . . . , pn}, where pj is of exact degree j − 1, be a basis for the space Pn

of polynomials of degree n− 1. We introduce the row vector

π(x) = [p1(x), p1(x), . . . , pn(x)] (5.3.29)

containing these basis functions. The modified moments with respect to the basis π(x) are

νk = (pk, 1) =
∫ b

a

pk(x)w(x) dx, k = 1 : n. (5.3.30)

We define the two symmetric matrices

G =
∫

π(x)T π(x)w(x) dx, Ĝ =
∫

xπ(x)T π(x)w(x) dx (5.3.31)

associated with the basis defined by π . These have elements

gij = (pi, pj ) = (pj , pi), ĝij = (xpi, pj ) = (xpj , pi),
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respectively. Here

G =


(p1, p1) (p1, p2) . . . (p1, pn)

(p2, p1) (p2, p2) . . . (p2, pn)
...

...
. . .

...

(pn, p1) (pn, p2) . . . (pn, pn)

 (5.3.32)

is called the Gram matrix.
In particular, for the power basis

θ(x)(1, x, x2, . . . , xn−1) (5.3.33)

we have gij = (xi−1, xj−1) = µi+j−2, where µk = (xk, 1) = ∫ b

a
xkw(x) dx are the

ordinary moments. In this case the matrices G and Ĝ are the Hankel matrices,

G =


µ0 µ1 · · · µn−1

µ1 µ2 · · · µn

...
... · · · ...

µn−1 µn · · · µ2n−2

 , Ĝ =


µ1 µ2 · · · µn

µ2 µ3 · · · µn+1
...

... · · · ...

µn µn+1 · · · µ2n−1

 .

In particular, for w(x) ≡ 1 and [a, b] = [0, 1] we have µk =
∫ 1

0 xk−1 dx = 1/k, and G is
the notoriously ill-conditioned Hilbert matrix.

Let u and v be two polynomials in Pn and set

u(x) = π(x)uπ , v(x) = π(x)vπ ,

where uπ , vπ are column vectors with the coefficients in the representation of u and v with
respect to the basis defined by π(x). Then

(u, v) =
∫ b

a

uTππ(x)
T π(x)vπw(x) dx = uTπGvπ .

For u = v �= 0 we find that uTπGuπ = (u, u) > 0, i.e., the Gram matrix G is positive
definite. (The matrix Ĝ is, however, usually indefinite.)

A polynomial of degree n that is orthogonal to all polynomials of degree less than n

can be written in the form

φn+1(x) = xpn(x)− π(x)cn, cn ∈ Rn. (5.3.34)

Here cn is determined by the linear equations

0 = (π(x)T , φn+1(x)) = (π(x)T , xpn(x))− (π(x)T , π(x))cn,

or in matrix form
Gcn = ĝn, (5.3.35)

where ĝn = Ĝen is the last column of the matrix Ĝ. Further, there are coefficients ck,j
depending on the basis only such that

xpj (x) =
j+1∑
k=1

ck,jpk(x), j = 1 : n− 1.
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Together with (5.3.34) this can be summarized in the (row) vector equation

xπ(x) = π(x)C + φn+1(x)e
T
n , C = (C, cn). (5.3.36)

Here eTn = (0, 0, . . . , 1) and C = (ck,j ) ∈ Rn×(n−1] is an upper Hessenberg matrix. Note
that C depends on the basis only, while cn also depends on the weight function.

For the power basis pj (x) = xj−1, the matrix C is a shift matrix; the only nonzero
elements are ones in the first main subdiagonal. If the basis is some family of orthogonal
polynomials (possibly with respect to weight function other than w) C is a tridiagonal
matrix, obtained by means of the three-term recurrence relation for this family.

After multiplication of (5.3.36) by π(x)T w(x) and integration we obtain by (5.3.31)

GC = Ĝ, (5.3.37)

where the last column of this matrix equation is the same as (5.3.35). Let G∗, C∗ be defined
like G, C, with n increased by one. Note that G and C are principal submatrices of G∗ and
C∗. Then Ĝ equals the n first rows of the product G∗C∗. Thus, no integrations are needed
for gn, except for the Gram matrix G.

Theorem 5.3.6.
Denote by R the matrix of coefficients of the expansions of the general basis functions

π(x) = [p1(x), p1(x), . . . , pn(x)] into the orthonormal basis polynomials with respect to
the weight function w, i.e.,

π(x) = ϕ(x)R, ϕ(x) = (φ1(x), φ2(x), . . . , φn(x)). (5.3.38)

(Conversely, the coefficients of the expansions of the orthogonal polynomials into the orig-
inal basis functions are found in the columns of R−1.) Then G = RTR, i.e., R is the upper
triangular Cholesky factor of the Gram matrix G. Note that up to the mth row this factor-
ization is the same for all n ≥ m. Further, Ĝ = RT JR, where J is a symmetric tridiagonal
matrix.

Proof. R is evidently an upper triangular matrix. Further, we have

G =
∫

π(x)T π(x)w(x) dx =
∫

RT ϕ(x)T ϕ(x)Rw(x) dx

= RT IR = RTR,

since the elements of ϕ(x) are an orthonormal system. This shows that R is the Cholesky
factor of G. We similarly find that

Ĝ = RT JR, J =
∫

xϕ(x)T ϕ(x)w(x) dx,

and thus J clearly is a symmetrical matrix. J is a particular case of Ĝ and from (5.3.37)
and G = I it follows that J = C, a Hessenberg matrix. Hence J is a symmetric tridiagonal
matrix.
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From (5.3.37) and Theorem 5.3.6 it follows that

Ĝ = RT JR = GC = RTRC.

Since R is nonsingular we have RC = JR, or

J = RCR−1. (5.3.39)

This shows that the spectrum of C equals the spectrum of J , for every choice of basis. We
shall see that it is equal to the set of zeros of the orthogonal polynomial φn+1. For the power
basis pj (x) = xj−1 (5.3.34) reads

φn+1(x) = xn −
n∑

k=1

cn,kx
k−1,

and hence

C =


0 cn,1
1 0 cn,2

1
. . .

...
. . . 0 cn,n−1

1 cn,n

 ∈ Rn×n.

This is the companion matrix of φn+1(x), and it can be shown that (see Sec. 6.5.2)

det(zI − C) = φn+1(x). (5.3.40)

Thus the eigenvalues λj , j = 1 : n, of C are the zeros of φn+1(x), and hence the nodes for
the Gauss–Christoffel quadrature formula.

It can be verified that the row eigenvector of G corresponding to λj is

θ(λj ) = (1, λj , λ
2
j , . . . , λ

n−1
j ); (5.3.41)

i.e., it holds that
θ(λj )C = λjθ(λj ), j = 1 : n. (5.3.42)

This yields a diagonalization of C, since, by the general theory of orthogonal polynomials
(see Theorem 5.3.3), the roots are simple roots, located in the interior of the smallest interval
that contains the weight distribution.

To summarize, we have shown that if C and the Gram matrix G are known, then cn
can be computed by performing the Cholesky decomposition G = RTR and then solving
RTRcn = ĝn for cn. The zeros of φn+1(x) are then equal to the eigenvalues of C = (C, cn)

or, equivalently, the eigenvalues of the symmetric tridiagonal matrix J = RCR−1. This
is true for any basis π(x). Note that J can be computed by solving the matrix equation
JR = RC or

RT J = (RC)T . (5.3.43)

Here RT is a lower triangular matrix and the right-hand side a lower Hessenberg matrix.
This and the tridiagonal structure of J considerably simplifies the calculation of J . In the
next section we show how the theory developed here leads to a stable and efficient algorithm
for computing Gauss quadrature rules.
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5.3.5 Jacobi Matrices and Gauss Quadrature

The computations are most straightforward for the power basis, θ(x), using the moments
of the weight function as the initial data. But the condition number of the Gram matrix G,
which in this case is a Hankel matrix, increases rapidly with n. This is related to the by now
familiar fact that, when n is large, xn can be accurately approximated by a polynomial of
lower degree. Thus the moments for the power basis are not generally a good starting point
for the numerical computation of the matrix J .

For the orthonormal basis ϕ(x), we have G = I , and

C = Ĝ = J =


β1 γ1 0
γ1 β2 γ2

γ2
. . .

. . .
. . . γn−1

0 γn−1 βn

 (5.3.44)

is a symmetric tridiagonal matrix with nonzero off-diagonal elements. Such a tridiagonal
matrix is called a Jacobi matrix and hasn real distinct eigenvaluesλj . The row eigenvectors
ϕ(λj ) satisfy

ϕ(λj )J = λjϕ(λj ), j = 1 : n, (5.3.45)

and are mutually orthogonal. Setting

M = (ϕ(λ1)
T , . . . , ϕ(λn)

T ), X = diag (λ1, . . . , λn),

we obtain by (5.3.45) and the symmetry of J the important matrix formula

JM = MX. (5.3.46)

It also follows from (5.3.36) that for all x

xϕ(x) = Jϕ(x)+ γnφn+1(x)e
T
n , (5.3.47)

where γn is to be chosen so that ‖φn+1‖ = 1. The last column of this equation gives

(x − βn)φn(x) = γn−1φn−1(x)+ γnφn+1(x), (5.3.48)

which is the three-term recurrence relation (4.5.36) for orthogonal polynomials.
Let V be an orthogonal matrix that diagonalizes J , i.e.,

JV = VX, V T V = VV T = I,

where X is the diagonal in (5.3.46). It follows that V = MD for some diagonal matrix
D = diag (di), and

VV T = MD2MT = I,

i.e.,
n∑

k=1

d2
k φi(λk)φj (λk) = δij = (φi, φj ), i, j = 1 : n.
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This equality holds also for i = n+ 1, because φn+1(λk) = 0, for all k, and (φn+1, φj ) = 0,
j = 1 : k.

Since every polynomial p of degree less than 2n can be expressed as a linear combi-
nation of polynomials of the form φiφj (in infinitely many ways) it follows that

n∑
k=1

d2
k p(λk) =

∫
p(x)w(x) dx, (5.3.49)

for any polynomialp of degree less than 2n. This yields the Gauss–Christoffel quadrature
rule: ∫

f (x)w(x) dx =
n∑

k=1

d2
k f (λk)+ R, (5.3.50)

where

R =
∫
(f (x)− p(x))w(x) dx,

for any polynomial p of degree less than 2n such that p(λk) = f (λk), k = 1 : n.
The familiar form for the remainder term

R = knf
(2n)(ξ)/(2n)! (5.3.51)

is obtained by choosing a Hermite interpolation polynomial for p and then applying the
mean value theorem. The constant kn is independent of f . The choice f (x) = A2

nx
2n+ · · ·

gives kn = A−2
n . A recurrence relation for the leading coefficient Aj is obtained by (5.3.48).

We obtain
A0 = µ

−1/2
0 , Ak+1 = Ak/γk. (5.3.52)

The mean value form for R may be inappropriate when the interval is infinite. Some other
estimate of the above integral for R may then be more adequate, for example, in terms of
the best approximation of f by a polynomial in some weighted Lp-norm.

Asimple formula for the weights d2
k , due to Golub and Welsch, is obtained by matching

the first rows of the equality V = MD. Since the elements in the first row of M are all equal
to the constant φ1 = µ

−1/2
0 , we obtain

eT1 V = µ
−1/2
0 dT , d2

k = µ0v
2
1,k, k = 1 : n. (5.3.53)

The well-known fact that the weights are positive and their sum equals µ0 follows immedi-
ately from this simple formula for the weights. We summarize these results in the following
theorem.

When the three-term recurrence relation for the orthonormal polynomials associated
with the weight function w(x) is known, or can be computed by the Stieltjes procedure in
Sec. 4.5.5, the Gauss–Christoffel rule can be obtained elegantly as follows. The nodes of
the Gauss–Christoffel rule are the eigenvalues of the tridiagonal matrix J , and by (5.3.53)
the weights equal the square of the first components of the corresponding eigenvectors.
These quantities can be computed in a stable and efficient way by the QR algorithm; see
Volume II. In [159] this scheme is extended to the computation of nodes and weights for
Gauss–Radau and Gauss–Lobatto quadrature rules.
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When the coefficients in the three-term relation cannot be obtained by theoretical
analysis or numerical computation, we consider the matrices C and G = RTR as given data
about the basis and weight function. Then J can be computed by means of (5.3.39) and the
nodes and weights are computed according to the previous case. Note that R and J can be
determined simultaneously for all k ≤ n; just take the submatrices of the largest ones.

The following concise and applicable result was found independently by Golub and
Meurant (see [162, Theorem 3.4]) and the first-named author (see [86, Theorem 2.2]).

Theorem 5.3.7.
Let J be the symmetric tridiagonal n× n matrix that contains the coefficients in the

three-term recurrence relation for the orthogonal polynomials associated with a positive
weight functionw(x) (with any sequence of leading coefficients). Let e1 = (1, 0, 0, . . . , 0)T

and f be an analytic function in a domain that contains the spectrum of J .
Then the formula

1

µ0

∫
f (x)w(x) dx ≈ eT1 f (J )e1 (5.3.54)

is exact when f is a polynomial of degree less than 2n.

Proof. If J = VXV T is the spectral decomposition of J , then we have

f (J ) = V T diag (f (λ1, . . . , f (λn)))V .

Let p be a polynomial of degree less than 2n. We obtain using (5.3.53)

eT1 VXV T eT1 = µ
−1/2
0 dT p(X)µ

−1/2
0 d = µ−1

0

n∑
j=1

p(λj )d
2
j = µ−1

0

∫
p(x)w(x) dx,

since Gauss–Christoffel quadrature is exact for p.

If f (J ) is evaluated by means of the diagonalization of J , (5.3.54) becomes exactly
the Gauss–Christoffel rule, but it is noteworthy that eT1 V

T f (X)V e1 can sometimes be
evaluated without a diagonalization of J . The accuracy of the estimate of the integral still
depends on how well f (z) can be approximated by a polynomial of degree less than twice
the size of J in the weighted L1-norm with weight function w(x).

In many important cases the weight function w(x) is symmetric about the origin.
Then the moments of odd order are zero, and the orthogonal polynomials of odd (even)
degree are odd (even) functions. By Theorem 4.5.18 the coefficients βk = 0 for all k, i.e.,
the matrix J will have a zero diagonal. The eigenvalues of J will then appear in pairs,±λk .
If n is odd, there is also a simple zero eigenvalue. The weights are symmetric so that the
weights corresponding to the two eigenvalues ±λi are the same.

We shall see that in the symmetric case the eigenvalue problem for the tridiagonal
matrix J ∈ Rn×n can be reduced to a singular value problem for a smaller bidiagonal matrix
B, where

B ∈
{

Rn/2×n/2 if n even,
R(n+1)/2×(n−1)/2 if n odd.
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We permute rows and columns in J , by an odd-even permutation; for example, if n = 7,
then (1, 2, 3, 4, 5, 6, 7) :→ (1, 3, 5, 7, 2, 4, 6), and

J̃ = T −1JT =
(

0 B

BT 0

)
, B =


γ1 0 0
γ2 γ3 0
0 γ4 γ5

0 0 γ6

 ,

where T is the permutation matrix effecting the permutation. Then, J and J̃ have the same
eigenvalues. If the orthogonal matrix V diagonalizes J , i.e., J = VXV T , then Ṽ = T −1V

diagonalizes J̃ = T T JT , i.e., J̃ = T −1JT = T −1V λV T T . Note that the first row of V is
just a permutation of Ṽ . We can therefore substitute Ṽ for V in equation (5.3.53), which
gives the weights in the Gauss–Christoffel formula.

The following relationship between the singular value decomposition (SVD) and a
Hermitian eigenvalue problem, exploited by Lanczos [231, Chap. 3], can easily be verified.

Theorem 5.3.8.
Let the SVD of B ∈ Rm×n (m ≥ n) be B = PHQT , where

H = diag (H1, 0), H1 = diag (σ1, σ2, . . . , σn),

and

P = (P1, P2) ∈ Cm×m, P1 ∈ Cm×n, Q ∈ Cn×n.

Then the symmetric matrix C ∈ R(m+n)×(m+n) has the eigendecomposition

C =
(

0 B

BT 0

)
= V

(
H1 0 0
0 0 0
0 0 −H1

)
V T , (5.3.55)

where V ∈ is orthogonal:

V = 1√
2

(
P1

√
2P2 P1

Q 0 −Q
)T

. (5.3.56)

Hence the eigenvalues of C are ±σ1,±σ2, . . . ,±σr , and zero repeated (m− n) times.

The QR algorithm for symmetric tridiagonal matrices can be adopted to compute the
singular values σi and the first components of the matrix P = (P1, P2) of left singular
vectors of the bidiagonal matrix B; see Volume II.

Example 5.3.4.
The monic Legendre polynomials are symmetric around the origin, and thus βn = 0

for all n and µ0 = 2. According to (4.5.55) we have

γn = n√
4n2 − 1

= 1√
4− n−2

.
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Algorithm 5.4. Gauss–Legendre Quadrature.

The following MATLAB function computes the nodes and weights of the Gauss–Legendre
rule with n points by generating the bidiagonal matrix B and its SVD.

function [x,w] = legendre(n);
% LEGENDRE(n) computes the nodes and weights in the
% Gauss-Legendre quadrature rule with n+1 nodes (n > 1).
%
gamma = 1./sqrt(4 - [1:n].ˆ(-2));
gamma(n+1) = 0;
b0(1) = gamma(1:2:n+1);
b1(k) = gamma(2:2:n);
B = diag(b0,0) + diag(b1,1);
[P,S,Q] = svd(B);
x = diag(S); [x,i] = sort(x);
w = P(1,i).ˆ2;
if rem(n,2) == 0 w(1) = 2*w(1); end

For n = 6 the upper bidiagonal matrix becomes

B =


1/
√

3 2/
√

15
3/
√

35 4/
√

63
5/
√

99 6/
√

143
0

 ∈ R4×4,

and we obtain the nonnegative nodes (cf. Table 5.3.1) x1 = 0,

x2 = 0.40584515137740, x3 = 0.74153118559939, x4 = 0.94910791234276.

The first row of P = ( P1 P2 ) is

−0.45714285714286, −0.61792398440675, 0.52887181007242, −0.35984019532130,

where the first entry corresponds to node x1 = 0. Dividing the last three components by√
2, squaring, and multiplying with µ0 = 2, gives the weights

w1 = 0.41795918367347, w2 = 0.38183005050512, w3 = 0.27970539148928,

w4 = 0.12948496616887.

We remark that the given program is inefficient in that the full matrices of left and
right singular vectors are computed. Unless n is very large the execution time is negligible
anyway.

In the computation of harmonic transforms used in spectral weather analysis, Gauss–
Legendre quadrature rules with values of n in excess of 1000 are required. Methods for
computing points and weights accurate to double precision for such high values of n are
discussed by Swarztrauber in [338].
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Review Questions
5.3.1 What increase in order of accuracy can normally be achieved by a judicious choice

of the nodes in a quadrature formula?

5.3.2 What are orthogonal polynomials? Give a few examples of families of orthogo-
nal polynomials together with the three-term recursion formula, which its members
satisfy.

5.3.3 Formulate and prove a theorem concerning the location of zeros of orthogonal poly-
nomials.

5.3.4 Give an account of Gauss quadrature formulas, including accuracy and how the nodes
and weights are determined. What important properties are satisfied by the weights?

5.3.5 What is the orthogonality property of the Legendre polynomials?

Problems and Computer Exercises
5.3.1 Prove that the three-point quadrature formula∫ 1

−1
f (x) dx ≈ 1

9

(
5f

(
−
√

3

5

)
+ 8f (0)+ 5f

(√
3

5

))

is exact for polynomials of degree five. Apply it to the computation of∫ 1

0

sin x

1+ x
dx,

and estimate the error in the result.

5.3.2 (a) Calculate the Hermite polynomials Hn for n ≤ 4 using the recurrence relation.

(b) Express, conversely, 1, x, x2, x3, x4 in terms of the Hermite polynomials.

5.3.3 (a) Determine the orthogonal polynomials φn(x), n = 1, 2, 3, with leading coeffi-
cient 1, for the weight function w(x) = 1+ x2, x ∈ [−1, 1].
(b) Give a two-point Gaussian quadrature formula for integrals of the form∫ 1

−1
f (x)(1+ x2) dx

which is exact when f (x) is a polynomial of degree three.

Hint: Use either the method of undetermined coefficients taking advantage of sym-
metry, or the three-term recurrence relation in Theorem 5.3.1.

5.3.4 (W. Gautschi)

(a) Construct the quadratic polynomial φ2 orthogonal on [0,∞] with respect to the
weight function w(x) = e−x . Hint: Use

∫∞
0 tme−t dt = m!.
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(b) Obtain the two-point Gauss–Laguerre quadrature formula∫ ∞

0
f (x)e−x dx = w1f (x1)+ w2f (x2)+ E2(f ),

including a representation for the remainder E2(f ).

(c) Apply the formula in (b) to approximate

I =
∫ ∞

0
(x + 1)−1e−x dx.

Use the remainder term to estimate the error, and compare your estimate with the
true error (I = 0.596347361 . . .).

5.3.5 Show that the formula∫ 1

−1
f (x)(1− x2)−1/2 dx = π

n

n∑
k=1

f

(
cos

2k − 1

2n
π

)
is exact when f (x) is a polynomial of degree at most 2n− 1.

5.3.6 (a) Use the MATLAB program in Example 5.3.4 to compute nodes and weights for
the Gauss–Hermite quadrature rule. Use it to compute a 10-point rule; check the
result using a table.

(b) Write a program for computing nodes and weights for Gauss quadrature rules
when w(x) is not symmetric. In MATLAB use the function [v,d] = eig(J) to
solve the eigenvalue problems. Use the program to compute some Gauss–Laguerre
quadrature rules.

5.3.7 Derive the Gauss–Lobatto quadrature rule in Example 5.3.3, with two interior points
by using the Ansatz∫ 1

−1
f (x) dx = w1(f (−1)+ f (1))+ w2(f (−x1)+ f (x1)),

and requiring that it be exact for f (x) = 1, x2, x4.

5.3.8 Compute an approximate value of∫ 1

−1
x4 sin2 πx dx = 2

∫ 1

0
x4 sin2 πx dx,

using a five-point Gauss–Legendre quadrature rule on [0, 1] for the weight function
w(x) = 1. For nodes and weights see Table 5.3.1 or use the MATLAB func-
tion legendre(n) given in Example 5.3.4. (The true value of the integral is
0.11407 77897 39689.)

5.3.9 (a) Determine exactly the Lobatto formulas with given nodes at −1 and 1 (and the
remaining nodes free), for the weight functions

w(x) = (1− x2)−1/2, x ∈ [−1, 1].

Copyright ©2008 by the Society for Industrial and Applied Mathematics. 
This electronic version is for personal use and may not be duplicated or distributed. 
 
From "Numerical Methods in Scientific Computing, Volume 1" by Germund Dalquist and Åke Björck. 
This book is available for purchase at www.siam.org/catalog.



dqbjvol1
2007/12/28
page 587

5.4. Multivariate Integration 587

Determine for this weight function also the nodes and weights for the Gauss quadra-
ture formula (i.e., when all nodes are free).

Hint: Set x = cosφ, and formulate equivalent problems on the unit circle. Note that
you obtain (at least) two different discrete orthogonality properties of the Chebyshev
polynomials this way.

(b) Lobatto–Kronrod pairs are useful when a long interval has been divided into
several shorter intervals (cf. Example 5.3.3). Determine Lobatto–Kronrod pairs
(exactly) for w(x) = (1− x2)−1/2.

5.3.10 Apply the formulas in Problem 5.3.9 to the case w(x) = 1, x ∈ [−1, 1], and some
of the following functions.

(a) f (x) = ekx , k = 1, 2, 4, 8, . . . ; (b) f (x) = 1/(k + x), k = 1, 2, 1.1, 1.01;

(c) f (x) = k/(1+ k2x2), k = 1, 4, 16, 64.

Compare the actual errors with the error estimates.

5.3.11 For k = 1 the integral (5.2.24) in Example 5.2.5 is∫ π/2

−π/2

cos t

t + π + u(t + π)
dt.

Compute this integral with at least ten digits of accuracy, using a Gauss–Legendre
rule of sufficiently high order. Use the MATLAB function legendre(n) given
in Example 5.3.4 to generate the nodes and weights.

5.3.12 Write a MATLAB function for the evaluation of the Sievert176 integral,

S(x, θ) =
∫ θ

0
e−x/ cosφ dφ,

for any x ≥ 0, x ≤ θ ≤ 90◦, with at least six decimals relative accuracy. There may
be useful hints in [1, Sec. 27.4].

5.4 Multivariate Integration
Numerical integration formulas in several dimensions, sometimes called numerical cuba-
ture, are required in many applications. Several new difficulties are encountered in deriving
and applying such rules.

In one dimension any finite interval of integration [a, b] can be mapped by an affine
transformation onto [−1, 1] (say). Quadrature rules need therefore only be derived for this
standard interval. The order of accuracy of the rule is preserved since affine transformations
preserve the degree of the polynomial. In d dimensions the boundary of the region of
integration has dimension d − 1, and can be complicated manifold. For any dimension
d ≥ 2 there are infinitely many connected regions in Rd which cannot be mapped onto each
other using affine transformations. Quadrature rules with a certain polynomial accuracy
designed for any of these regions are fundamentally different than for any other region.

176Sievert was a Swedish radiophysicist, was so revered that doses of radiation are measured in millisieverts, or
even microsieverts, all over the world.
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The number of function values needed to obtain an acceptable approximation tends
to increase exponentially in the number of dimensions d. That is, if n points are required
for an integral in one dimension, then nd points are required in d dimensions. Thus, even
for a modest number of dimensions, achieving an adequate accuracy may be an intractable
problem. This is often referred to as the curse of dimensionality, a phrase coined by
Richard Bellman.177

5.4.1 Analytic Techniques

It is advisable to try, if possible, to reduce the number of dimensions by applying analytic
techniques to parts of the task.

Example 5.4.1.
The following triple integral can be reduced to a single integral:∫ ∞

0

∫ ∞

0

∫ ∞

0
e−(x+y+z) sin(xz) sin(yx) dxdydz

=
∫ ∞

0
e−x dx

∫ ∞

0
e−y sin(yx)dy

∫ ∞

0
e−z sin(zx) dz =

∫ ∞

0

( x

1+ x2

)2
e−x dx.

This is possible because∫ ∞

0
e−z sin(zx)dz =

∫ ∞

0
e−y sin(yx)dz = x

1+ x2
.

The remaining single integral is simply evaluated by the techniques previously studied.

Often a transformation of variable is needed for such a reduction. Given a region
D in the (x, y)-plane, this is mapped onto a region D′ in the (u, v)-plane by the variable
transformation

x = φ(u, v), y = ψ(u, v). (5.4.1)

If φ and ψ have continuous partial derivatives and the Jacobian

J (u, v) =
∣∣∣∣ ∂φ/∂u ∂φ∂u

∂ψ∂u ∂ψ∂u

∣∣∣∣ (5.4.2)

does not vanish in D′, then∫ ∫
D

f (x, y) dx dy =
∫ ∫

D′
f (φ(x, y), ψ(x, y))|J (u, v)| du dv. (5.4.3)

It is important to take into account any symmetries that the integrand can have. For example,
the integration of a spherically symmetric function over a spherical region reduces in polar
coordinates to a one-dimensional integral.

177Richard Ernest Bellman (1920–1984) was an American mathematician. From 1949 to 1965 he worked at the
Rand Corporation and made important contributions to operations research and dynamic programming.

Copyright ©2008 by the Society for Industrial and Applied Mathematics. 
This electronic version is for personal use and may not be duplicated or distributed. 
 
From "Numerical Methods in Scientific Computing, Volume 1" by Germund Dalquist and Åke Björck. 
This book is available for purchase at www.siam.org/catalog.



dqbjvol1
2007/12/28
page 589

5.4. Multivariate Integration 589

Example 5.4.2.
To evaluate the integral

I =
∫ ∫

D

y sin(ky)

x2 + y2
dx dy,

where D is the unit circle x2 + y2 ≤ 1, we introduce polar coordinates (r, ϕ), x = r cosϕ,
y = r sin ϕ, dx dy = r dr dϕ. Then, after integrating in the r variable, this integral is
reduced to the single integral

I = 1

k

∫ 2π

0
[1− cos (k sin ϕ)] dϕ.

This integral is not expressible in finite terms of elementary functions. Its value is in fact
(1 − J0(k))2π/k, where J0 is a Bessel function. Note that the integrand is a periodic
function of ϕ, in which the trapezoidal rule is very efficient (see Sec. 5.1.4). This is a useful
device for Bessel functions and many other transcendental functions which have integral
representations.

If the integral cannot be reduced, then several approaches are possible:

(a) Tensor products of one-dimensional quadrature rules can be used. These are particu-
larly suitable if the boundary of the region is composed of straight lines. Otherwise
numerical integration in one direction at a time can be used; see Sec. 5.4.3.

(b) For more general boundaries an irregular triangular grid can be used; see Sec. 5.4.4.

(c) Monte Carlo or quasi–Monte Carlo methods can be used, mainly for problems with
complicated boundaries and/or a large number of dimensions; see Sec. 5.4.5.

5.4.2 Repeated One-Dimensional Integration

Consider a double integral (5.4.7) over a region D in the (x, y)-plane such that lines parallel
with the x-axis have at most one segment in common with D (see Figure 5.4.1). Then J

can be written in the form

I =
∫ b

a

(∫ d(x)

c(x)

f (x, y)dy

)
dx,

or

I =
∫ b

a

ϕ(x) dx, ϕ(x) =
∫ d(x)

c(x)

f (x, y)dy. (5.4.4)

The one-dimensional integral ϕ(x) can evaluated for the sequence of abscissae xi , i =
1, . . . , n, used in another one-dimensional quadrature rule for J . Note that if D is a more
general domain, it might be possible to decompose D into the union of simpler domains on
which these methods can be used.
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Figure 5.4.1. Region D of integration.

Example 5.4.3.
Compute

I =
∫ ∫

D

sin2 y sin2 x(1+ x2 + y2)−1/2 dx dy,

where
D = {(x, y) | x2 + y2 ≤ 1} ∪ {(x, y) | 0 ≤ x ≤ 3, |y| ≤ 0.5}

is a composite region (see Figure 5.4.1). Then

I =
∫ 3

−1
sin2 x ϕ(x) dx, (5.4.5)

ϕ(x) =
∫ c(x)

−c(x)
sin2 y (1+ x2 + y2)−1/2dy, (5.4.6)

where

c(x) =
{
(1− x2)1/2, x < 1

2

√
3,

1
2 , x ≥ 1

2

√
3.

Values of ϕ(x) were obtained by the application of Romberg’s method to (5.4.6) and nu-
merical integration applied to the integral (5.4.5) yielded the value of I = 0.13202± 10−5.
Ninety-six values of x were needed, and for each value of x, 20 function evaluations used,
on the average. The grid is chosen so that x = 1

2

√
3, where ϕ′(x) is discontinuous, is a grid

point.

5.4.3 Product Rules

In d = 2 dimensions, common boundaries are a rectangle, circle, or triangle, or a combina-
tion of these. Consider a double integral over a rectangular region

I =
∫ ∫

D

u(x, y) dxdy, D = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}. (5.4.7)
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Introduce an equidistant rectangular grid in the (x, y)-plane, with grid spacings h and k

in the x and y directions,

xi = a + ih, yj = c + jk, h = (b − a)/n, k = (d − c)/m,

and set uij = u(xi, yj ). Then the following product rule for the double integral generalizes
the compound midpoint rule:

I ≈ hk

m∑
i=1

n∑
j=1

ui−1/2,j−1/2. (5.4.8)

The product trapezoidal rule is

I ≈ hk

m∑
i=1

n∑
j=1

1

4
(ui−1,j−1 + ui−1,j + ui,j−1 + ui,j )

= hk

m∑
i=0

n∑
j=0

wijuij . (5.4.9)

Here wij = 1 for the interior grid points, i.e., when 0 < i < m, and 0 < j < n. For the
trapezoidal rule wij = 1

4 for the four corner points, while wij = 1
2 for the other boundary

points. Both formulas are exact for all bilinear functions xiyj , 0 ≤ i, j ≤ 1. The error
can be expanded in even powers of h and k so that Romberg’s method can be used to
get more accurate results. The generalization to integrals over the hypercube [0, 1]d is
straightforward.

It is not necessary to use the same quadrature rule in both dimensions. Suppose we
have the two one-dimensional quadrature rules∫ b

a

f (x) dx ≈
n∑

i=1

wif (xi)+ (b − a)R1,

∫ d

c

g(y) dy ≈
m∑

j=1

vjg(yj )+ (d − c)R2.

(5.4.10)
Combining these two rules over the rectangular region D gives the product rule∫ b

a

∫ d

c

u(x, y) dx dy ≈
∫ b

a

( m∑
j=1

vju(x, yj )+ (d − c)R2

)
dx

=
m∑

j=1

vj

∫ b

a

u(x, yj ) dx +
∫ b

a

(d − c)R2 dx ≈
n∑

i=1

m∑
j=1

wivju(xi, yj )+ R,

where

R = (d − c)

∫ b

a

R2 dx + (b − a)

m∑
j=1

vjR1 ≈ (b − a)(d − c)(R1 + R2).

The following property of product rules follows easily.
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Theorem 5.4.1.
If the two one-dimensional rules (5.4.10) integrate f (x) exactly over [a, b] and g(y)

exactly over [c, d], then the product rule (5.4.11) integrates u(x, y) = f (x)g(y) exactly
over the region [a, b] × [c, d].

If the one-dimensional rules are exact for polynomials of degree d1 and d2, respec-
tively, then the product rule will be exact for all bivariate polynomials xpyq , where p ≤ d1

and q ≤ d2.

Example 5.4.4.
The product Simpson’s rule for the square |x| ≤ h, |y| ≤ h has the form

∫ h

−h

∫ h

−h
u(x, y) dxdy = 4h2

1∑
j=−1

1∑
i=−1

wi,ju(xi, yj ).

It uses 32 = 9 function values, with abscissae and weights given by

(xi, yj ) (0,0) (±h,±h) (±h, 0) (0,±h)
wi,j 4/9 1/36 1/9 1/9

.

Of similar accuracy is the product rule obtained from a two-point Gauss–Legendre rule,
which uses the four points

(xi, yi) =
(
± h√

3
,± h√

3

)
wi = 1

4
.

For both rules the error is O(h4). Note that for the corresponding composite rules, the
functions values at corner points and midpoints in the product Simpson’s rule are shared
with other subsquares. Effectively this rule also uses four function values per subsquare.

Higher-accuracy formulas can also be derived by operator techniques, based on an
operator formulation of Taylor’s expansion (see (4.8.2)),

u(x0 + h, y0 + k) = e(hDx+kDy)u(x0, y0). (5.4.11)

For regions D, such as a square, cube, cylinder, etc., which are the Cartesian product
of lower-dimensional regions, product integration rules can be developed by multiplying
together the lower-dimensional rules. Product rules can be used on nonrectangular regions,
if these can be mapped into a rectangle. This can be done, for example, for a triangle, but
product rules derived in this way are often not very efficient and are seldom used.

For nonrectangular regions, the rectangular grid may also be bordered by triangles or
“triangles” with one curved side, which may be treated with the techniques outlined in the
next section.

So far we have restricted ourselves to the two-dimensional case. But the ideas are
more general. Let (x1, . . . , xr) ∈ C, where C is a region in Rr and (y1, . . . , ys) ∈ D, where
D is a region in Rr . Let C ×D denote the Cartesian product of C and D, i.e., the region in
Rr+s consisting of points (using vector notations) (x, y) such that x ∈ C and y ∈ D.
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Suppose we have two quadrature rules for the regions C and D∫
C

f (x) dx ≈
n∑

i=1

wif (xi ),

∫
D

g(y) dy ≈
m∑

j=1

vig(yi ). (5.4.12)

We can combine these two rules to give a product rule for the region C ×D:∫
C×D

u(x, y) dx dy ≈
n∑

i=1

n∑
i=1

wivju(xi , yj ). (5.4.13)

Product rules are not necessarily the most economical rules. More efficient quadrature
rules exist, which are not the result of applying one-dimensional rules to several dimensions.
We could try to determine such rules by selecting n nodes and weights so that the rule
integrates bivariate polynomials of as high a degree as possible. This is much more difficult
in several dimensions than in one dimension, where this approach led to Gaussian rules.
The solution is in general not unique; there may be several rules with different nodes and
weights. For most regions it is not known what the best rules are. Some progress has been
made in developing nonproduct quadrature rules of optimal order for triangles.

Some simple quadrature rules for circles, triangles, hexagons, spheres, and cubes are
given in Abramowitz–Stegun [1, pp. 891–895], for example, the following quadrature rule
for a double integral over a disk C = {(x, y) ∈ C | x2 + y2 ≤ h2}:∫ ∫

C

f (x, y) dxdy = πh2
4∑

i=1

wif (xi, yi)+O(h4),

where
(xi, yi) = (±h/2,±h/2), wi = 1/4, i = 1 : 4.

This four-point rule has the same order of accuracy as the four-point Gaussian product for
the square given in Example 5.4.4. A seven-point O(h6) rule uses the points (see Figure
5.4.2)

(x1, y1) = (0, 0), (xi, yi) = (±h√2/3, 0), i = 2, 3

(xi, yi) = (±h/√6,±h/√2), i = 4 : 7,

with weights w1 = 1/4, and wi = 1/8, i = 2 : 7.

Figure 5.4.2. A seven-point O(h6) rule for a circle.
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Example 5.4.5.
We seek a quadrature rule

I =
∫ ∫

T

f (x, y) dxdy = A

n∑
i=1

wif (xi, yi)+ R, (5.4.14)

where T is an equilateral triangle with sides of length h and area A = h2
√

3/4. We use
function values at the “center of mass” (x1, y1) = (0, h/(2

√
3)) of the triangle and at the

corner nodes

(xi, yi) = (±h/2, 0), i = 2, 3, and (x4, y4) = (0, h
√

3/2).

Then, taking w1 = 3/4, and wi = 1/12, i = 2 : 4, we get a four-point rule with error
R = O(h3).

Adding nodes at the midpoint of the sides

(x5, y5) = (0, 0) and (xi, yi) = (±h/4, h
√

3/4), i = 6, 7,

and using weights w1 = 9/20, and wi = 1/20, i = 2 : 4, wi = 2/15, i = 5 : 7, gives a
seven-point rule for which R = O(h4) in (5.4.14).

5.4.4 Irregular Triangular Grids

A grid of triangles of arbitrary form is a convenient means for approximating a complicated
plane region. It is fairly easy to program a computer to refine a coarse triangular grid
automatically; see Figure 5.4.3. It is also easy to adapt the density of points to the behavior
of the function.

Figure 5.4.3. Refinement of a triangular grid.

Triangular grids are thus more flexible than rectangular ones. On the other hand, the
administration of a rectangular grid requires less storage and a simpler program. Some-
times the approximation formulas are also a little simpler. Triangular grids are used, for
example, in the finite element method (FEM) for problems in continuum mechanics and
other applications of partial differential equations; see [111].
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Let the points Pj , j = 1, 2, 3, with coordinates pj = (xj , yj ), be the vertices of
a triangle T with area Y > 0. Then any point p = (x, y) in the plane can be uniquely
expressed by the vector equation

p = θ1p1 + θ2p2 + θ3p3, θ1 + θ2 + θ3 = 1. (5.4.15)

The θi , which are called homogeneous barycentric coordinates of P , are determined from
the following nonsingular set of equations:

θ1x1 + θ2x2 + θ3x3 = x, (5.4.16)

θ1y1 + θ2y2 + θ3y3 = y,

θ1 + θ2 + θ3 = 1.

Barycentric coordinates were discovered by Möbius178 in 1827; see Coxeter [83, Sec. 13.7].
In engineering literature the barycentric coordinates for a triangle are often called area
coordinates since they are proportional to the area of the three subtriangles induced by P ;
see Figure 5.4.4.

P
1

P
2

P
3

P
θ

2

θ
3

θ
1

Figure 5.4.4. Barycentric coordinates of a triangle.

The interior of the triangle is characterized by the inequalities θi > 0, i = 1, 2, 3.
In this case P is the center of mass (centroid) of the three masses θ1, θ2, θ3 located at the
vertices of the triangle. This explains the term “barycentric coordinates.” The equation for
the side P2P3 is θ1 = 0; similarly θ2 = 0 and θ3 = 0 describe the other two sides. Note that
if θ and θ ′ (i = 1, 2, 3) are the barycentric coordinates of the points Pi and Pj , respectively,
then the barycentric coordinates of αP + (1− α)P ′ are αθ + (1− α)θ ′.

Barycentric coordinates are useful also for d > 2 dimensions. By a simplex in Rd we
mean the convex hull of (d + 1) points pj = (p1j , p2j , . . . , pdj )

T ∈ Rd , which are called
the vertices of the simplex. We assume that the vertices are not contained in a hyper-plane.
This is the case if and only if the (d + 1)× (d + 1) matrix

A =
(
p1 p2 · · · pd+1

1 1 · · · 1

)
(5.4.17)

is nonsingular. For d = 2 the simplex is a triangle and for d = 3 a tetrahedron.
178August Ferdinand Möbius (1790–1868) was a German astronomer and mathematician, and a professor at the

University of Leipzig. His 1827 work Barycentric Calculus became a classic and played an important role in the
development of projective geometry.
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The barycentric coordinates of a point p are the unique vector θ ∈ Rd+1 such that

(p1. . . . , pd+1)θ = p, eT θ = 1 (5.4.18)

or, equivalently, θ = A−1
(
p

1

)
. The center of gravity of the simplex is the point with

coordinates θi = 1/(d + 1), i = 1 : d + 1.
If u is a nonhomogeneous linear function of p, i.e., if

u(p) = aT p + b = (aT , b)

(
p

1

)
,

then the reader can verify that

u(p) =
d+1∑
j=1

θju(pj ), u(pj ) = aT pj + b. (5.4.19)

This is a form of linear interpolation and shows that a linear function is uniquely determined
by its values at the vertices.

Using also the midpoints of the edges pij = 1
2 (pi + pj ) a quadratic interpolation

formula can be obtained.

Theorem 5.4.2.
Define

4′′
ij = u(pi)+ u(pj )− 2u

(
1

2
(pi + pj )

)
, i < j. (5.4.20)

Then the interpolation formula

u(p) =
∑
j

θju(pj )− 2
∑
i<j

θiθj4
′′
ij , (5.4.21)

where the summation indices i, j are assumed to take all values 1 : d + 1 unless otherwise
specified, is exact for all quadratic functions.

Proof. The right-hand is a quadratic function of p, since it follows from (5.4.16) that the θi
are (nonhomogeneous) linear functions of the coordinates of p. It remains to show that the
right-hand side is equal to u(p) for p = pj , and p = (pi + pj )/2, i, j = 1 : d + 1.

For p = pj , θj = 1, θi = 0, i �= j , hence the right-hand side equals ui . For
p = (pi + pj )/2, θi = θj = 1/2, θk = 0, k �= i, j , and hence the right-hand side becomes

1

2
(ui + uj )− 2 · 1

2

(
ui + uj − 2u

(
1

2
(pi + pj )

))
= u

(
1

2
(pi + pj )

)
.

The following theorem for triangles (d = 2) is equivalent to a rule which has been
used in mechanics for the computation of moments of inertia since the nineteenth century.
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Theorem 5.4.3.
Let T be a triangle with vertices p1, p2, p3 and area Y . Then the integration formula∫

T

u(x, y) dxdy = Y

3

(
u

(
1

2
(p1 + p2)

)
+ u

(
1

2
(p1 + p3)

)
+ u

(
1

2
(p2 + p3)

))
(5.4.22)

is exact for all quadratic functions.

Proof. Using the interpolation formula (5.4.21), the integral equals∫
T

u(x, y) dxdy =
∑
j

u(pj )

∫
T

θjdxdy − 2
∑
i<j

4′′
ij

∫
T

θiθj dxdy.

By symmetry,
∫
T
θi dxdy is the same for i = 1, 2, 3. Similarly,

∫
T
θiθj dxdy is the same

for all i < j . Hence using (5.4.20)∫
T

u(x, y) dxdy = a(u1 + u2 + u3)− 2b(4′′
23 +4′′

13 +4′′
12)

= (a − 4b)(u1 + u2 + u3) (5.4.23)

+ 4b

(
u

(
1

2
(p1 + p2)

)
+ u

(
1

2
(p2 + p3)

)
+ u

(
1

2
(p3 + p1)

))
,

where

a =
∫
T

θ1 dxdy, b =
∫
T

θ1θ2 dxdy.

Using θ1, θ2 as new variables of integration, we get by (5.4.16) and the relation θ3 =
1− θ1 − θ2

x = θ1(x1 − x3)+ θ1(x1 − x3)+ x3,

y = θ1(y1 − y3)+ θ1(y1 − y3)+ y3.

The functional determinant is equal to∣∣∣∣ x1 − x3 x2 − x3

y1 − y3 y2 − y3

∣∣∣∣ = 2Y,

and (check the limits of integration!)

a =
∫ 1

θ1=0

∫ 1−θ1

θ2=0
2θ1dθ1dθ2 = 2Y

∫ 1

0
θ1(1− θ1)dθ1 = Y

3
,

b =
∫ 1

θ1=0

∫ 1−θ1

θ2=0
2θ1θ2dθ1dθ2 = 2A

∫ 1

0
θ1
(1− θ1)

2

2
dθ1 = Y

12
.

The results now follow by insertion of this into (5.4.23).
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A numerical method for a two-dimensional region can be based on Theorem 5.4.2, by
covering the domain D by triangles. For each curved boundary segment (Figure 5.4.5) the
correction

4

3
f (S)A(PRQ) (5.4.24)

is to be added, where A(PRQ) is the area of the triangle with vertices P,R,Q. The
error of the correction can be shown to be O(‖Q − P ‖5) for each segment, if R is close
to the midpoint of the arc PQ. If the boundary is given in parametric form, x = x(x),
y = y(x), where x and y are twice differentiable on the arc PQ, then one should choose
tR = 1

2 (tP + tQ). Richardson extrapolation can be used to increase the accuracy; see the
examples below.

P

Q

S R

Figure 5.4.5. Correction for curved boundary segment.

Example 5.4.6.
Consider the integral

I =
∫ ∫

D

(x2 + y2)k dxdy,

where the region D and the grids for I4 and I16 are shown in Figure 5.4.6 and In denotes the
result obtained with n triangles. Because of symmetry the error has an expansion in even
powers of h. Therefore, we can use repeated Richardson extrapolation and put

R′
n = I4n + 1

15
(I4n − In), R′′

n = R′
4n +

1

63
(R′

4n − R′
n).

The results are shown in the table below. In this case the work could be reduced by a factor
of four, because of symmetry.

k I4 I16 I64 R′
4 R′

16 R′′
4 Correct

2 0.250000 0.307291 0.310872 0.311111 0.311111 0.311111 28/90

3 0.104167 0.161784 0.170741 0.165625 0.171338 0.171429 0.171429

4 0.046875 0.090678 0.104094 0.093598 0.104988 0.105169 0.105397

It is seen that R′-values have full accuracy for k = 2 and that the R′′-values have
high accuracy even for k = 4. In fact, it can be shown that R′-values are exact for any
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Figure 5.4.6. The grids for I4 and I16.

fourth-degree polynomial and R′′-values are exact for any sixth-degree polynomial, when
the region is covered exactly by the triangles.

Example 5.4.7.
The integral

a

∫ ∫
(a2 − y2)−1/2 dxdy,

over a quarter of the unit circle x2+y2 ≤ 1, is computed with the grids shown in Figure 5.4.6,
and with boundary corrections according to (5.4.15). The following results, using the
notation of the previous example, were obtained and compared with the exact values.

a I8 I32 R′
8 Correct

2 0.351995 0.352077 0.352082 0.352082

4 0.337492 0.337608 0.337615 0.337616

6 0.335084 0.335200 0.335207 0.335208

8 0.334259 0.334374 0.334382 0.334382

Note, however, that Richardson extrapolation may not always give improvement, for
example, when the rate of convergence of the basic method is more rapid than usual.

5.4.5 Monte Carlo Methods

Multidimensional integrals arise frequently in physics, chemistry, computational eco-
nomics,179 and other branches of science. If a product rule is used to evaluate a multi-
variate integral in d dimensions the work will increase exponentially with the number of
dimensions d . For example, the product rule of an 8-point one-dimensional rule will re-
quire (8)8 = 224 ≈ 1.6 · 107 function evaluations in eight dimensions. This means that the
problem may quickly become intractable when d increases.

One important application of the Monte Carlo method described in Section 1.4.2 is
the numerical calculation of integrals of high dimension. For the Monte Carlo method

179The valuation of financial derivatives can require computation of integrals in 360 dimensions!
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the accuracy achieved is always proportional to 1/
√
n, where n is the number of function

evaluations independent of the dimension d. Thus, if approached randomly multivariate
integration becomes tractable! The Monte Carlo method can be said to break “the curse of
dimension” inherent in other methods. (For smooth integrands the Monte Carlo method is,
however, not of optimal complexity.)

We shall briefly describe some ideas used in integration by the Monte Carlo method.
For simplicity, we first consider integrals in one dimension, even though the Monte Carlo
method cannot really compete with traditional numerical methods for this problem.

Let Ri , i = 1 : N , be a sequence of random numbers rectangularly distributed on
[0, 1], and set

I =
∫ 1

0
f (x) dx ≈ I1, I1 = 1

N

N∑
i=1

f (Ri).

Then the expectation of the variable I1 is I and its standard deviation decreases as N−1/2.
I1 can be interpreted as a stochastic estimate of the mean value of f (x) in the interval [0, 1].
This generalizes directly to multivariate integrals over the unit hypercube. Let Ri ∈ Rd ,
i = 1 : N , be a sequence of random points uniformly distributed on [0, 1]d . Then

I =
∫
[0,1]d

f (x) dx ≈ I1, I1 = 1

N

N∑
i=1

f (Ri). (5.4.25)

If the integral is to be taken over a subregion D ⊂ [0, 1]d , we can simply set f (x) = 0,
x /∈ D. In contrast to interpolatory quadrature methods smooth functions are not integrated
more efficiently than discontinuous functions. According to the law of large numbers, the
convergence

IN(f )→ vol(D)µ(f ) as N →∞,

where µ(f ) is the mean value of f (X), where X is a continuous random variable uniformly
distributed in D ⊂ [0, 1]d .

A probabilistic error estimate can be obtained by estimating the standard deviation of
µ(f ) by the empirical standard deviation sN(f ), where

sN(f )
2 = 1

N − 1

N∑
i=1

(f (Ri)− IN(f ))
2 . (5.4.26)

If the integral is over a subregion D ⊂ [0, 1]d , we should use the mean value over D, that
is, neglect all points Ri /∈ D.

The standard deviation of the Monte Carlo estimate in (5.4.25) decreases as N−1/2.
This is very slow even compared to the trapezoidal rule, for which the error decreases as
N−2. To get one extra decimal place of accuracy we must increase the number of points by
a factor of 100. To get three-digit accuracy the order of one million points may be required!
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But if we consider, for example, a six-dimensional integral this is not exorbitant. Using a
product rule with ten subdivisions in each dimension would also require 106 points.

The above Monte Carlo estimate is a special case of a more general one. Suppose Xi ,
i = 1 : N , has density function g(x). Then

I2 = 1

N

N∑
i=1

f (Xi)

g(Xi)

has expected value I , since

E

(
f (Xi)

g(Xi)

)
=
∫ 1

0

f (x)

g(x)
f (x) dx =

∫ 1

0
f (x) dx = I.

If one can find a frequency function g(x) such that f (x)/g(x) fluctuates less than f (x),
then I2 will have smaller variance than I1. This procedure is called importance sampling;
it has proved very useful in particle physics problems, where important phenomena (for
example, dangerous radiation which penetrates a shield) are associated with certain events
of low probability.

We have previously mentioned the method of using a simple comparison problem.
The Monte Carlo variant of this method is called the control variate method. Suppose
that ϕ(x) is a function whose integral has a known value K , and suppose that f (x)− ϕ(x)

fluctuates much less than f (x). Then

I = K +
∫ 1

0
(f (x)− ϕ(x)) dx,

where the integral to the right can be estimated by

I3 = 1

N

N∑
i=1

(f (Ri)− ϕ(Ri)),

which has less variance than I1.

5.4.6 Quasi–Monte Carlo and Lattice Methods

In Monte Carlo methods the integrand is evaluated at a sequence of points which are sup-
posed to be a sample of independent random variables. In quasi–Monte Carlo methods
the accuracy is enhanced by using specially chosen deterministic points not necessarily
satisfying the statistical tests discussed in Sec. 1.6.2. These points are constructed to be
approximately equidistributed over the region of integration.

If the region of integration D is a subset of the d-dimensional unit cube Cn = [0, 1]d
we setf (x) ≡ 0, forx /∈ D. We can then always formulate the problem as the approximation
of an integral over the d-dimensional unit cube Cn = [0, 1]d :

I [f ] =
∫
Cn

f (x1, . . . , xd) dx1 . . . dxd . (5.4.27)
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An infinite sequence of vectors x1, x2, x3, . . . in Rd is said to be equidistributed in the cube
[0, 1]d if

I [f ] = lim
N→∞QN(f ), QN(f ) = 1

N

N∑
i=1

f (xi), (5.4.28)

for all Riemann integrable functions f (x). The quadrature rules QN are similar to those
used in Monte Carlo methods; this explains the name quasi–Monte Carlo methods.

In the average case setting the requirement that the worst case error is smaller than ε

is replaced by the weaker guarantee that the expected error is at most ε. This means that we
make some assumptions about the distribution of the functions to be integrated. In this setting
the complexity of multivariate integration has been shown to be proportional to 1/ε, com-
pared to (1/ε)2 for the Monte Carlo method. Hence the Monte Carlo method is not optimal.

The convergence of the quadrature rules QN in (5.4.28) depends on the variation
of f and the distribution of the sequence of points x1, . . . , xN . The discrepancy of a
finite sequence of points x1, x2, . . . , xN is a measure of how much the distribution of the
sequence deviates from an equidistributed sequence. The deterministic set of points used in
quasi–Monte Carlo are constructed from low discrepancy sequences, which are, roughly
speaking, uniformly spread as N →∞; see Niederreiter [270].

Let 0 < ai ≤ 1, i = 1 : d , and restrict f (x), x ∈ Rn, to the class of functions

f (x) =
{

1 if 0 ≤ xi ≤ ai ,
0 otherwise.

We require the points to be such that everyQN(f ) gives a good approximation of the integral
of f (x) over the hypercube [0, 1]d for all functions in this class.

Low discrepancy sequences are usually generated by algorithms from number theory,
a branch of mathematics seemingly far removed from analysis. Recall from Sec. 2.2.1 that
each integer i has a unique representation dk · · · d2d1d0 with respect to a integer basis b ≥ 2.
The radical inverse function ϕb maps an integer i onto the real number

ϕb(i) = 0.d0d1d2 · · · dk ∈ [0, 1).

The Van der Corput sequence (see [358]) with respect to the base b is the infinite sequence
defined by

xi = ϕb(i), i = 1, 2, 3, . . . .

These sequences can be shown to have an asymptotic optimal discrepancy. The first few
elements in the sequence for b = 2 are shown in the table below.

i ϕ2(i)

1 1 .1 0.5
2 10 .01 0.25
3 11 .11 0.75
4 100 .001 0.125
5 101 .101 0.625
6 110 .011 0.375
7 111 .111 0.875
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Halton sequences (see [176]) are multidimensional extensions of Van der Corput
sequences.

Definition 5.4.4.
Let the bases b1, b2, . . . , bd be pairwise relative prime. Then the Halton sequence

xi ∈ [0, 1]d with respect to these bases is defined by

xi = (ϕb1(i), ϕb2(i), . . . , ϕbd (i))
T , i = 0, 1, 2, . . . , (5.4.29)

where ϕbk (i) is the radical inverse function with respect to the basis bk , k = 1 : d.

The Hammersley sequences [179] are similar to Halton sequences but are finite and
differ in the definition of the first component. The N -point Hammersley sequence with
respect to the bases b1, b2, . . . , bd−1 is the sequence of points xi ∈ [0, 1]d defined by

xi =
(
i/N, ϕb1(i), ϕb2(i), . . . , ϕbd−1(i)

)T
, i = 0 : N − 1. (5.4.30)

The Hammersley points in [0, 1]2 for N = 512 and b1 = 2 are shown in Figure 5.4.7.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5
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0.7

0.8

0.9

1

Figure 5.4.7. Hammersley points in [0, 1]2.

Wozniakowski [376] showed that the Hammersley points are optimal sampling points
for multivariate integration. With n function evaluations a worst case error of quasi–Monte
Carlo methods is bounded by a multiple of (log n)d/n, which can be compared to n−1/2 for
Monte Carlo methods.
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Algorithm 5.5. Hammersley Points.

The following MATLAB program generates N Hammersley points in the two-dimensional
square [0, 1]2 for b1 = 2.

[x,y] = Hammersley(N);
n = ceil(log2(N));
for i = 1:N

x(i) = (i-1)/N;
j = i-1;
for p = 1:n

j = j/2; d(p) = 0;
if j > floor(j)

d(p) = 1; j = floor(j);
end;

end;
phi = d(n)/2;
for p = n-1:-1:1

phi = (phi + d(p))/2;
end;
y(i) = phi;

end;

Using harmonic analysis it was shown in Sec. 5.1.4 that the composite trapezoidal rule
can be very accurate for periodic integrands. These results can be extended to multivariate
integration of periodic integrands. A lattice rule for the numerical integration over the
d-dimensional unit cube Cn = [0, 1]d is an equal weight rule,

QN(f ) = 1

N

N−1∑
j=0

f (xi), (5.4.31)

where the sampling points xi , i = 0 : N − 1, are points of an integration lattice in the cube
[0, 1]d . A multivariate extension of the compound trapezoidal rule is obtained by taking

xi = fraction

(
i

Np

)
,

where fraction(x) returns the fractional part of x. Lattice rules can be studied by expanding
the integrand in a Fourier series. The “curse of dimension” can be lifted by using a class of
randomly shifted lattice rules introduced by Ian H. Sloane.

Review Questions
5.4.1 What is meant by a product integration rule for computing a multivariate integral?

What is the drawback with such rules for high dimensions?
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5.4.2 Give the generalization of the composite trapezoidal and midpoint rules for a two-
dimensional rectangular grid.

5.4.3 Define barycentric coordinates in two dimensions. Give a formula for linear interpo-
lation on a triangular grid.

5.4.4 For high-dimensional integrals and difficult boundaries Monte Carlo methods are
often used. How does the accuracy of such methods depend on the number n of
evaluations of the integrand?

5.4.5 How do quasi–Monte Carlo methods differ from Monte Carlo methods?

Problems and Computer Exercises
5.4.1 Let E be the ellipse {(x, y) | (x/a)2 + (y/b)2 ≤ 1}. Transform

I =
∫ ∫

E

f (x, y) dxdy

into an integral over a rectangle in the (r, t)-plane with the transformation x =
a r cos t , y = b r sin t .

5.4.2 Consider the integral I of u(x, y, z) over the cube |x| ≤ h, |y| ≤ h, |z| ≤ h. Show
that the rule

I ≈ 4

3
h3

6∑
i=1

f (xi, yi, zi),

where (xi, yi, zi) = (±h, 0, 0), (0,±h, 0), (0, 0,±h), is exact for all monomials
xiyj , 0 ≤ i, j ≤ 1.

5.4.3 (a) In one dimension Simpson’s rule can be obtained by taking the linear combination
S(h) = (T (h)+2M(h))/3 of the trapezoidal and midpoint rule. Derive a quadrature
rule ∫ h

−h

∫ h

−h
f (x, y) dxdy = 4h2

6
(f1,0 + f0,1 + f−1,0 + f0,−1 + 2f0,0)

for the square [−h, h]2 by taking the same linear combination of the product trape-
zoidal and midpoint rules. Note that this rule is not equivalent to the product Simpson’s
rule.

(b) Show that the rule in (a) is exact for all cubic polynomials. Compare its error term
with that of the product Simpson’s rule.

(c) Generalize the midpoint and trapezoidal rules to the cube [−h, h]3. Then derive
a higher-order quadrature rule using the idea in (a).

5.4.4 Is a quadratic polynomial uniquely determined, given six function values at the ver-
tices and midpoints of the sides of a triangle?

5.4.5 Show that the boundary correction of (5.4.15) is exact if f ≡ 1, and if the arc is a
parabola where the tangent at R is parallel to PQ.
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5.4.6 Formulate generalizations to several dimensions of the integral formula of Theo-
rem 5.4.2, and convince yourself of their validity.

Hint: The formula is most simply expressed in terms of the values in the vertices and
in the centroid of a simplex.

5.4.7 (a) Write a program which uses the Monte Carlo method to compute
∫ 1

0 ex dx. Take
25, 100, 225, 400, and 635 points. Plot the error on a log-log scale. How does the
error depend (approximately) on the number of points?

(b) Compute the integral in (a) using the control variate method. Take ϕ(x) =
1+ x + x2/2. Use the same number of points as in (a).

5.4.8 Use the Monte Carlo method to estimate the multiple integral

I =
∫
[0,1]n

∏
|xk − 1/3|1/2 ≈ 0.49n,

for n = 6. What accuracy is attained using N = 103 random points uniformly
distributed in six dimensions?

5.4.9 Write a program to generate Halton points in two dimensions for b1 = 2 and b2 = 5.
Then plot the first 200 points in the unit square.

Hint: For extracting the digits to form xi , see Algorithm 2.1. You can also use TOMS
Algorithm 247; see [177].

Notes and References
Numerical integration is a mature and well-understood subject. There are several com-
prehensive monographs devoted to this area; see in particular Davis and Rabinowitz [91]
and Engels [110]. Examples of integrals arising in practice and their solution are found
in [91, Appendix 1]. Newton–Cotes’ and other quadrature rules can also be derived using
computer algebra systems; see [129]. A collection of numerical quadrature rules is given in
the Handbook [1, Sec. 25].

The idea of adaptive Simpson quadrature is old and treated fully by Lyness [246].
Further schemes, computer programs, and examples are given in [91]. A recent discussion
of error estimates and reliability of different codes is given by Espelid [113].

The literature on Gauss–Christoffel quadrature and its computational aspects is exten-
sive. Gauss–Legendre quadrature was derived by Gauss in 1814 using a continued fraction
expansion. In 1826 Jacobi showed that the nodes were the zeros of the Legendre poly-
nomials and that they were real, simple, and in [−1, 1]. The convergence of Gaussian
quadrature methods was first studied by Stieltjes in 1884. More on the history can be found
in Gautschi [140]. Recent results by Trefethen [352] suggest that the Clenshaw–Curtis rule
may be as accurate as Gauss–Legendre quadrature with an equal number of nodes.

The importance of the eigenvalues and eigenvectors of the Jacobi matrices for com-
puting Gauss’quadrature rules was first elaborated by Golub and Welsch [167]. The general-
ization to Radau and Lobatto quadrature was outlined in Golub [159] and further generalized
by Golub and Kautsky [161].

The presentation in Sec. 5.3.4 was developed in Dahlquist [86]. Related ideas can be
found in Gautschi [137, 143] and Mysovskih [268]. The encyclopedic book by Gautschi [145]
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describes the current state-of-the-art of orthogonal polynomials and Gauss–Christoffel
quadrature computation; see also the survey by Laurie [233].

There is an abundance of tables giving abscissae and weights for various quadra-
ture rules. Abramowitz and Stegun [1, Sec. 25] give tables for Newton–Cotes’ and several
Gauss–Christoffel rules. Many Gaussian quadrature formulas with various weight func-
tions are tabulated in Stroud and Secrest [336]. A survey of other tables is given in [91,
Appendix 4].

Many algorithms and codes for generating integration rules have appeared in the public
domain. In [91, Appendices 2, 3] several useful Fortran programs are listed and a bibliogra-
phy ofAlgol and Fortran programs published before 1984 is given. Kautsky and Elhay [219]
have developed algorithms and a collection of Fortran subroutines called IQPACK [108]
for computing weights of interpolatory quadratures. QUADPACK is a collection of Fortran
77 and 90 subroutines for integration of functions available at www.netlib.org. It is
described in the book by R. Piessens et al. [285].

A software package in the public domain by Gautschi [142] includes routines for
generating Gauss-type arbitrary weight functions. A package QPQ consisting of MATLAB
programs for generating orthogonal polynomials as well as dealing with applications is
available at www.cs.purdue.edu/archives/2002/wxg/codes. Part of these
programs are described in Gautschi [147]. Maple programs for Gauss quadrature rules are
given by von Matt [257]. An overview of results related to Gauss–Kronrod rules is given
by Monegato [265]. The calculation of Gauss–Kronrod rules is dealt with in [232, 61].

Gaussian product rules for integration over the n-dimensional cube, sphere, surface
of a sphere, and tetrahedron are derived in Stroud and Secrest [336, Ch. 3]. Some simple
formulas of various accuracy are tabulated in [1, Sec. 25]. The derivation of such formulas
are treated by Engels [110]. Nonproduct rules for multidimensional integration are found
in Stroud [335].

A good introduction to multidimensional integration formulas and Monte Carlo meth-
ods is given by Ueberhuber [357, Chap. 12]. Construction of fully symmetric numerical
multidimensional integration formulas over the hypercube [−h, h]d using a rectangular
grid is treated by McNamee and Stenger [258]. For a survey of recent results on sparse
grids and breaking “the curse of dimensionality,” see Bungartz and Griebel [59]. The ef-
ficiency of quasi–Monte Carlo methods are discussed in [321]. Lattice rules are treated in
the monograph by Sloan and Joe [320]. For an introduction see also [357, Sec. 12.4.5].

Copyright ©2008 by the Society for Industrial and Applied Mathematics. 
This electronic version is for personal use and may not be duplicated or distributed. 
 
From "Numerical Methods in Scientific Computing, Volume 1" by Germund Dalquist and Åke Björck. 
This book is available for purchase at www.siam.org/catalog.




